A Severi type theorem for surfaces in $\mathbb {P}^6$
HTML articles powered by AMS MathViewer
- by Pietro De Poi and Giovanna Ilardi
- Proc. Amer. Math. Soc. 149 (2021), 591-605
- DOI: https://doi.org/10.1090/proc/15263
- Published electronically: December 16, 2020
- PDF | Request permission
Corrigendum: Proc. Amer. Math. Soc. (to appear).
Abstract:
Let $X \subset \mathbb {P}^N$ be a projective, non-degenerate, irreducible smooth variety of dimension $n$. After giving the definition of generalised OADP-variety (one apparent double point), i.e. varieties $X$ such that:
$n(k+1) - (N-r)(k-r) + r = N$,
there is one apparent $(k+1)$-secant $(r-1)$-space to a generic projection of $X$ from a point,
we concentrate in studying generalised OADP-surfaces in low dimensional projective spaces, and the main result of this paper is the classification of smooth surfaces in $\mathbb {P}^6$ with one $4$-secant plane through the general point of $\mathbb {P}^6$.
References
- Ciro Ciliberto, Massimiliano Mella, and Francesco Russo, Varieties with one apparent double point, J. Algebraic Geom. 13 (2004), no. 3, 475–512. MR 2047678, DOI 10.1090/S1056-3911-03-00355-2
- Ciro Ciliberto and Francesco Russo, Varieties with minimal secant degree and linear systems of maximal dimension on surfaces, Adv. Math. 200 (2006), no. 1, 1–50. MR 2199628, DOI 10.1016/j.aim.2004.10.008
- Ciro Ciliberto and Francesco Russo, On the classification of OADP varieties, Sci. China Math. 54 (2011), no. 8, 1561–1575. MR 2824959, DOI 10.1007/s11425-010-4164-7
- Pietro De Poi, On first order congruences of lines in ${\Bbb P}^4$ with irreducible fundamental surface, Math. Nachr. 278 (2005), no. 4, 363–378. MR 2121565, DOI 10.1002/mana.200310246
- Pietro De Poi and Emilia Mezzetti, On congruences of linear spaces of order one, Rend. Istit. Mat. Univ. Trieste 39 (2007), 177–206. MR 2441617
- Takao Fujita, Classification theories of polarized varieties, London Mathematical Society Lecture Note Series, vol. 155, Cambridge University Press, Cambridge, 1990. MR 1162108, DOI 10.1017/CBO9780511662638
- William Fulton, Intersection theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, Springer-Verlag, Berlin, 1998. MR 1644323, DOI 10.1007/978-1-4612-1700-8
- Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1994. Reprint of the 1978 original. MR 1288523, DOI 10.1002/9781118032527
- Paltin Ionescu, Embedded projective varieties of small invariants. III, Algebraic geometry (L’Aquila, 1988) Lecture Notes in Math., vol. 1417, Springer, Berlin, 1990, pp. 138–154. MR 1040557, DOI 10.1007/BFb0083339
- Patrick Le Barz, Quadrisécantes d’une surface de $P^{5}$, C. R. Acad. Sci. Paris Sér. A-B 291 (1980), no. 12, A639–A642 (French, with English summary). MR 606452
- Juan C. Migliore, Introduction to liaison theory and deficiency modules, Progress in Mathematics, vol. 165, Birkhäuser Boston, Inc., Boston, MA, 1998. MR 1712469, DOI 10.1007/978-1-4612-1794-7
- Francesco Russo, On a theorem of Severi, Math. Ann. 316 (2000), no. 1, 1–17. MR 1735076, DOI 10.1007/s002080050001
- Beniamino Segre, Sulle $V_n$ contenenti più di $\infty ^{n-k}S_k$. II, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8) 5 (1948), 275–280 (Italian). MR 36042
- F. Severi, Intorno ai punti doppi improprî di una superficie generale dello spazio a quattro dimensioni e a’ suoi punti tripli apparenti, Rend. Circ. Mat. Palermo, 15 (1901) 33–51. Reprinted in Opere matematiche: memorie e note. Vol. I, Accademia Nazionale dei Lincei, Roma, 14–30 (1971) JFM 34.0699.01 MR0701703.
- Igor R. Shafarevich, Basic algebraic geometry. 2, 3rd ed., Springer, Heidelberg, 2013. Schemes and complex manifolds; Translated from the 2007 third Russian edition by Miles Reid. MR 3100288
- Ravi Vakil, Murphy’s law in algebraic geometry: badly-behaved deformation spaces, Invent. Math. 164 (2006), no. 3, 569–590. MR 2227692, DOI 10.1007/s00222-005-0481-9
- F. L. Zak, Severi varieties, Mat. Sb. (N.S.) 126(168) (1985), no. 1, 115–132, 144 (Russian). MR 773432
Bibliographic Information
- Pietro De Poi
- Affiliation: Dipartimento di Scienze Matematiche, Informatiche e Fisiche, Università degli Studi di Udine, Via delle Scienze, 206 Località Rizzi, 33100 Udine, Italy
- MR Author ID: 621166
- ORCID: 0000-0002-6741-6612
- Email: pietro.depoi@uniud.it
- Giovanna Ilardi
- Affiliation: Dipartimento di Matematica e Applicazioni “Renato Caccioppoli”, Università degli Studi di Napoli “Federico II”, Via Cinthia, 80126 Napoli, Italy
- Email: giovanna.ilardi@unina.it
- Received by editor(s): December 17, 2019
- Received by editor(s) in revised form: June 26, 2020
- Published electronically: December 16, 2020
- Additional Notes: The first author is the corresponding author.
The first author was supported by DIMA-GEOMETRY, PRID Zucconi.
Both authors were supported by Ministero dell’Istruzione, Università e Ricerca of Italy:PRIN–2017 2015EYPTSB - PE1, Project ‘Geometria delle varietà algebriche’ and GNSAGA of INdAM - Communicated by: Claudia Polini
- © Copyright 2020 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 149 (2021), 591-605
- MSC (2010): Primary 14M20
- DOI: https://doi.org/10.1090/proc/15263
- MathSciNet review: 4198068