Separating invariants for multisymmetric polynomials
HTML articles powered by AMS MathViewer
- by Artem Lopatin and Fabian Reimers
- Proc. Amer. Math. Soc. 149 (2021), 497-508
- DOI: https://doi.org/10.1090/proc/15292
- Published electronically: December 14, 2020
- PDF | Request permission
Abstract:
This article studies separating invariants for the ring of multisymmetric polynomials in $m$ sets of $n$ variables over an arbitrary field $\mathbb {K}$. We prove that in order to obtain separating sets it is enough to consider polynomials that depend only on $\lfloor \frac {n}{2} \rfloor + 1$ sets of these variables. This improves a general result by Domokos about separating invariants. In addition, for $n \leq 4$ we explicitly give minimal separating sets (with respect to inclusion) for all $m$ in case $\text {char}(\mathbb {K}) = 0$ or $\text {char}(\mathbb {K}) > n$.References
- Harm Derksen and Gregor Kemper, Computational invariant theory, Invariant Theory and Algebraic Transformation Groups, I, Springer-Verlag, Berlin, 2002. Encyclopaedia of Mathematical Sciences, 130. MR 1918599, DOI 10.1007/978-3-662-04958-7
- Harm Derksen and Gregor Kemper, Computational invariant theory, Second enlarged edition, Encyclopaedia of Mathematical Sciences, vol. 130, Springer, Heidelberg, 2015. With two appendices by Vladimir L. Popov, and an addendum by Norbert A’Campo and Popov; Invariant Theory and Algebraic Transformation Groups, VIII. MR 3445218, DOI 10.1007/978-3-662-48422-7
- H. Derksen and V. Makam, Algorithms for orbit closure separation for invariants and semi-invariants of matrices, arXiv e-prints, (2018), p. arXiv:1801.02043.
- M. Domokos, Typical separating invariants, Transform. Groups 12 (2007), no. 1, 49–63. MR 2308028, DOI 10.1007/s00031-005-1131-4
- M. Domokos, Vector invariants of a class of pseudoreflection groups and multisymmetric syzygies, J. Lie Theory 19 (2009), no. 3, 507–525. MR 2583916
- M. Domokos, Degree bound for separating invariants of abelian groups, Proc. Amer. Math. Soc. 145 (2017), no. 9, 3695–3708. MR 3665025, DOI 10.1090/proc/13534
- Mátyás Domokos and Anna Puskás, Multisymmetric polynomials in dimension three, J. Algebra 356 (2012), 283–303. MR 2891134, DOI 10.1016/j.jalgebra.2012.01.016
- Mátyás Domokos and Endre Szabó, Helly dimension of algebraic groups, J. Lond. Math. Soc. (2) 84 (2011), no. 1, 19–34. MR 2819688, DOI 10.1112/jlms/jdq101
- Jan Draisma, Gregor Kemper, and David Wehlau, Polarization of separating invariants, Canad. J. Math. 60 (2008), no. 3, 556–571. MR 2414957, DOI 10.4153/CJM-2008-027-2
- Emilie Dufresne, Jonathan Elmer, and Müfit Sezer, Separating invariants for arbitrary linear actions of the additive group, Manuscripta Math. 143 (2014), no. 1-2, 207–219. MR 3147449, DOI 10.1007/s00229-013-0625-y
- Emilie Dufresne and Jack Jeffries, Separating invariants and local cohomology, Adv. Math. 270 (2015), 565–581. MR 3286543, DOI 10.1016/j.aim.2014.11.003
- Jonathan Elmer and Martin Kohls, Zero-separating invariants for finite groups, J. Algebra 411 (2014), 92–113. MR 3210921, DOI 10.1016/j.jalgebra.2014.03.044
- Jonathan Elmer and Martin Kohls, Zero-separating invariants for linear algebraic groups, Proc. Edinb. Math. Soc. (2) 59 (2016), no. 4, 911–924. MR 3570121, DOI 10.1017/S0013091515000322
- P. Fleischmann, A new degree bound for vector invariants of symmetric groups, Trans. Amer. Math. Soc. 350 (1998), no. 4, 1703–1712. MR 1451600, DOI 10.1090/S0002-9947-98-02064-9
- Fr. Junker, Uber symmetrische Functionen von mehreren Reihen von Veränderlichen, Math. Ann. 43 (1893), no. 2-3, 225–270 (German). MR 1510811, DOI 10.1007/BF01443648
- Ivan Kaygorodov, Artem Lopatin, and Yury Popov, Separating invariants for $2\times 2$ matrices, Linear Algebra Appl. 559 (2018), 114–124. MR 3857541, DOI 10.1016/j.laa.2018.08.010
- Martin Kohls and Müfit Sezer, Separating invariants for the Klein four group and cyclic groups, Internat. J. Math. 24 (2013), no. 6, 1350046, 11. MR 3078070, DOI 10.1142/S0129167X13500468
- Fabian Reimers, Separating invariants of finite groups, J. Algebra 507 (2018), 19–46. MR 3807041, DOI 10.1016/j.jalgebra.2018.03.022
- Fabian Reimers, Separating invariants for two copies of the natural $S_n$-action, Comm. Algebra 48 (2020), no. 4, 1584–1590. MR 4079329, DOI 10.1080/00927872.2019.1691575
- David Rydh, A minimal set of generators for the ring of multisymmetric functions, Ann. Inst. Fourier (Grenoble) 57 (2007), no. 6, 1741–1769 (English, with English and French summaries). MR 2377885
- L. Schläfli, über die resultante eines systemes mehrerer algebraischer gleichungen, Denkschriften der mathematisch-naturwissenschaftlichen Classe der Kaiserlichen Akademie der Wisschenschaften, Band IV, Wien, (1852).
- Francesco Vaccarino, The ring of multisymmetric functions, Ann. Inst. Fourier (Grenoble) 55 (2005), no. 3, 717–731 (English, with English and French summaries). MR 2149400
- Hermann Weyl, The Classical Groups. Their Invariants and Representations, Princeton University Press, Princeton, N.J., 1939. MR 0000255
Bibliographic Information
- Artem Lopatin
- Affiliation: Department of Mathematics, State University of Campinas, 651 Sergio Buarque de Holanda, 13083-859 Campinas, SP, Brazil
- MR Author ID: 740650
- Email: artem\textunderscore lopatin@yahoo.com
- Fabian Reimers
- Affiliation: Department of Mathematics, Technische Universität München, Zentrum Mathematik - M11, Boltzmannstr. 3, 85748 Garching, Germany
- MR Author ID: 1271373
- ORCID: 0000-0003-4552-8186
- Email: reimers@ma.tum.de
- Received by editor(s): November 12, 2019
- Received by editor(s) in revised form: April 9, 2020
- Published electronically: December 14, 2020
- Additional Notes: The first author was supported by FAPESP 2019/10821-8. We are grateful for this support.
- Communicated by: Jerzy Weyman
- © Copyright 2020 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 149 (2021), 497-508
- MSC (2020): Primary 13A50, 16R30, 20B30
- DOI: https://doi.org/10.1090/proc/15292
- MathSciNet review: 4198060