Harmonic extension from the exterior of a cylinder
HTML articles powered by AMS MathViewer
- by Stephen J. Gardiner and Hermann Render
- Proc. Amer. Math. Soc. 149 (2021), 1077-1089
- DOI: https://doi.org/10.1090/proc/15172
- Published electronically: January 13, 2021
- PDF | Request permission
Abstract:
Let $h$ be a harmonic function on an annular cylinder. It was recently shown that, if $h$ vanishes on the outer cylindrical boundary component, then it has a harmonic extension to a larger annular cylinder formed by radial reflection. This paper shows that a different kind of extension result holds if $h$ instead vanishes on the inner boundary component. As a corollary it is shown that any harmonic function on the exterior of an infinite cylinder which vanishes on the boundary has a harmonic extension to the complement of the axis of the cylinder.References
- David H. Armitage and Stephen J. Gardiner, Classical potential theory, Springer Monographs in Mathematics, Springer-Verlag London, Ltd., London, 2001. MR 1801253, DOI 10.1007/978-1-4471-0233-5
- Árpád Baricz, Dragana Jankov Maširević, Saminathan Ponnusamy, and Sanjeev Singh, Bounds for the product of modified Bessel functions, Aequationes Math. 90 (2016), no. 4, 859–870. MR 3523103, DOI 10.1007/s00010-016-0414-2
- J. Dougall, The determination of Green’s function by means of cylindrical or spherical harmonics, Proc. Edinb. Math. Soc. 18 (1900), 33-83.
- Peter Ebenfelt and Dmitry Khavinson, On point to point reflection of harmonic functions across real-analytic hypersurfaces in $\mathbf R^n$, J. Anal. Math. 68 (1996), 145–182. MR 1403255, DOI 10.1007/BF02790208
- A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher transcendental functions, Vol. II. McGraw-Hill, New York, 1953.
- Stephen J. Gardiner and Hermann Render, Harmonic functions which vanish on a cylindrical surface, J. Math. Anal. Appl. 433 (2016), no. 2, 1870–1882. MR 3398795, DOI 10.1016/j.jmaa.2015.08.077
- Stephen J. Gardiner and Hermann Render, A reflection result for harmonic functions which vanish on a cylindrical surface, J. Math. Anal. Appl. 443 (2016), no. 1, 81–91. MR 3508480, DOI 10.1016/j.jmaa.2016.05.007
- Stephen J. Gardiner and Hermann Render, Extension results for harmonic functions which vanish on cylindrical surfaces, Anal. Math. Phys. 8 (2018), no. 2, 213–220. MR 3817851, DOI 10.1007/s13324-018-0213-0
- Stephen J. Gardiner and Hermann Render, Harmonic functions which vanish on coaxial cylinders, J. Anal. Math. 138 (2019), no. 2, 891–915. MR 3996062, DOI 10.1007/s11854-019-0050-6
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190, DOI 10.1007/978-3-642-61798-0
- I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, 7th ed., Elsevier/Academic Press, Amsterdam, 2007. Translated from the Russian; Translation edited and with a preface by Alan Jeffrey and Daniel Zwillinger; With one CD-ROM (Windows, Macintosh and UNIX). MR 2360010
- Dmitry Khavinson and Erik Lundberg, Linear holomorphic partial differential equations and classical potential theory, Mathematical Surveys and Monographs, vol. 232, American Mathematical Society, Providence, RI, 2018. MR 3821527, DOI 10.1090/surv/232
- Dmitry Khavinson and Harold S. Shapiro, Remarks on the reflection principle for harmonic functions, J. Analyse Math. 54 (1990), 60–76. MR 1041175, DOI 10.1007/BF02796142
- Maciej Klimek, Pluripotential theory, London Mathematical Society Monographs. New Series, vol. 6, The Clarendon Press, Oxford University Press, New York, 1991. Oxford Science Publications. MR 1150978
- N. N. Lebedev, Special functions and their applications, Revised English edition, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965. Translated and edited by Richard A. Silverman. MR 0174795, DOI 10.1063/1.3047047
- Diego Ruiz-Antolín and Javier Segura, A new type of sharp bounds for ratios of modified Bessel functions, J. Math. Anal. Appl. 443 (2016), no. 2, 1232–1246. MR 3514344, DOI 10.1016/j.jmaa.2016.06.011
- Gábor Szegő, Orthogonal polynomials, 4th ed., American Mathematical Society Colloquium Publications, Vol. XXIII, American Mathematical Society, Providence, R.I., 1975. MR 0372517
- G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, England; The Macmillan Company, New York, 1944. MR 0010746
Bibliographic Information
- Stephen J. Gardiner
- Affiliation: School of Mathematics and Statistics, University College Dublin, Belfield, Dublin 4, Ireland
- MR Author ID: 71385
- ORCID: 0000-0002-4207-8370
- Email: stephen.gardiner@ucd.ie
- Hermann Render
- Affiliation: School of Mathematics and Statistics, University College Dublin, Belfield, Dublin 4, Ireland
- MR Author ID: 268351
- Email: hermann.render@ucd.ie
- Received by editor(s): September 30, 2019
- Received by editor(s) in revised form: May 7, 2020
- Published electronically: January 13, 2021
- Communicated by: Ariel Barton
- © Copyright 2021 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 149 (2021), 1077-1089
- MSC (2020): Primary 31B05
- DOI: https://doi.org/10.1090/proc/15172
- MathSciNet review: 4211863