Ramification of wild automorphisms of Laurent series fields
HTML articles powered by AMS MathViewer
- by Kenz Kallal and Hudson Kirkpatrick
- Proc. Amer. Math. Soc. 149 (2021), 991-1009
- DOI: https://doi.org/10.1090/proc/15250
- Published electronically: January 21, 2021
Abstract:
Let $K$ be a complete discrete valuation field with residue class field $k$, where both are of positive characteristic $p$. Then the group of wild automorphisms of $K$ can be identified with the group under composition of formal power series over $k$ with no constant term and $X$-coefficient $1$. Under the hypothesis that $p > b^2$, we compute the first nontrivial coefficient of the $p$th iterate of a power series over $k$ of the form $f = X + \sum _{i \geq 1} a_iX^{b+i}$. As a result, we obtain a necessary and sufficient condition for an automorphism to be â$b$-ramifiedâ, having lower ramification numbers of the form $i_n(f) = b(1 + \cdots + p^n)$. This is a vast generalization of Nordqvistâs 2017 theorem on $2$-ramified power series, as well as the analogous result for minimally ramified power series which proved to be useful for arithmetic dynamics in a 2013 paper of Lindahl on linearization discs in $\mathbf {C}_p$ and a 2015 result of LindahlâRivera-Letelier on optimal cycles over nonarchimedean fields of positive residue characteristic. The success of our computation is also promising progress towards a generalization of LindahlâNordqvistâs 2018 theorem bounding the norm of periodic points of $2$-ramified power series.References
- Frauke M. Bleher, Ted Chinburg, Bjorn Poonen, and Peter Symonds, Automorphisms of Harbater-Katz-Gabber curves, Math. Ann. 368 (2017), no. 1-2, 811â836. MR 3651589, DOI 10.1007/s00208-016-1490-2
- Rachel Camina, Subgroups of the Nottingham group, J. Algebra 196 (1997), no. 1, 101â113. MR 1474165, DOI 10.1006/jabr.1997.7082
- Marcus du Sautoy, Dan Segal, and Aner Shalev (eds.), New horizons in pro-$p$ groups, Progress in Mathematics, vol. 184, BirkhÀuser Boston, Inc., Boston, MA, 2000. MR 1765115, DOI 10.1007/978-1-4612-1380-2
- Saber Elaydi, An introduction to difference equations, 3rd ed., Undergraduate Texts in Mathematics, Springer, New York, 2005. MR 2128146
- Sandrine Jean, Conjugacy classes of series in positive characteristic and Witt vectors, J. ThĂ©or. Nombres Bordeaux 21 (2009), no. 2, 263â284 (English, with English and French summaries). MR 2541425, DOI 10.5802/jtnb.670
- S. A. Jennings, Substitution groups of formal power series, Canad. J. Math. 6 (1954), 325â340. MR 61610, DOI 10.4153/cjm-1954-031-9
- D. L. Johnson, The group of formal power series under substitution, J. Austral. Math. Soc. Ser. A 45 (1988), no. 3, 296â302. MR 957195, DOI 10.1017/S1446788700031001
- Kevin Keating, Automorphisms and extensions of $k((t))$, J. Number Theory 41 (1992), no. 3, 314â321. MR 1168991, DOI 10.1016/0022-314X(92)90130-H
- Benjamin Klopsch, Automorphisms of the Nottingham group, J. Algebra 223 (2000), no. 1, 37â56. MR 1738250, DOI 10.1006/jabr.1999.8040
- Karl-Olof Lindahl, The size of quadratic $p$-adic linearization disks, Adv. Math. 248 (2013), 872â894. MR 3107530, DOI 10.1016/j.aim.2013.07.020
- François Laubie, Abbas Movahhedi, and Alain Salinier, SystĂšmes dynamiques non archimĂ©diens et corps des normes, Compositio Math. 132 (2002), no. 1, 57â98 (French, with English summary). MR 1914256, DOI 10.1023/A:1016009331800
- Karl-Olof Lindahl and Jonas Nordqvist, Geometric location of periodic points of 2-ramified power series, J. Math. Anal. Appl. 465 (2018), no. 2, 762â794. MR 3809328, DOI 10.1016/j.jmaa.2018.05.009
- Karl-Olof Lindahl and Juan Rivera-Letelier, Optimal cycles in ultrametric dynamics and minimally ramified power series, Compos. Math. 152 (2016), no. 1, 187â222. MR 3453392, DOI 10.1112/S0010437X15007575
- Karl-Olof Lindahl and Juan Rivera-Letelier, Generic parabolic points are isolated in positive characteristic, Nonlinearity 29 (2016), no. 5, 1596â1621. MR 3481344, DOI 10.1088/0951-7715/29/5/1596
- F. Laubie and M. SaĂŻne, Ramification of automorphisms of $k((t))$, J. Number Theory 63 (1997), no. 1, 143â145. MR 1438654, DOI 10.1006/jnth.1997.2079
- Jonathan Lubin, Non-Archimedean dynamical systems, Compositio Math. 94 (1994), no. 3, 321â346. MR 1310863
- Jonathan Lubin, Senâs theorem on iteration of power series, Proc. Amer. Math. Soc. 123 (1995), no. 1, 63â66. MR 1215030, DOI 10.1090/S0002-9939-1995-1215030-8
- Jonathan Lubin, Torsion in the Nottingham group, Bull. Lond. Math. Soc. 43 (2011), no. 3, 547â560. MR 2820144, DOI 10.1112/blms/bdq120
- Jonas Nordqvist, Characterization of 2-ramified power series, J. Number Theory 174 (2017), 258â273. Corrigendum on publisherâs website indicates last name of author changed from Fransson to Nordqvist. MR 3597391, DOI 10.1016/j.jnt.2016.10.005
- J. Nordqvist and J. Rivera-Letelier, Residue fixed point index and wildly ramified power series, J. Lond. Math. Soc. (2020).
- J. Rivera-Letelier, Dynamique des fonctions rationelles sur des corps locaux, Ph.D. thesis, Université de Paris XI, 2000.
- Shankar Sen, On automorphisms of local fields, Ann. of Math. (2) 90 (1969), 33â46. MR 244214, DOI 10.2307/1970680
- Jean-Pierre Serre, Cohomologie galoisienne, 5th ed., Lecture Notes in Mathematics, vol. 5, Springer-Verlag, Berlin, 1994 (French). MR 1324577, DOI 10.1007/BFb0108758
- I. O. York, The exponent of certain finite $p$-groups, Proc. Edinburgh Math. Soc. (2) 33 (1990), no. 3, 483â490. MR 1077798, DOI 10.1017/S0013091500004880
- I. O. York, The group of formal power series under substitution, Ph.D. thesis, Nottingham University, 1990.
Bibliographic Information
- Kenz Kallal
- Affiliation: Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138
- MR Author ID: 1229093
- Email: kenzkallal@college.harvard.edu
- Hudson Kirkpatrick
- Affiliation: Department of Mathematics, Princeton University, Princeton, New Jersey 08544-1000
- Email: Hbk@princeton.edu
- Received by editor(s): April 30, 2019
- Received by editor(s) in revised form: June 25, 2020
- Published electronically: January 21, 2021
- Additional Notes: Part of the first authorâs contribution to this paper was carried out at the University of Chicago REU, which was supported by an NSF RTG grant, DMS-1344997
- Communicated by: Matthew Papanikolas
- © Copyright 2021 Copyright by the authors.
- Journal: Proc. Amer. Math. Soc. 149 (2021), 991-1009
- MSC (2010): Primary 11S15, 11D88, 11S82; Secondary 20E36, 20E18
- DOI: https://doi.org/10.1090/proc/15250
- MathSciNet review: 4211857