Left-orderability, branched covers and double twist knots
HTML articles powered by AMS MathViewer
- by Hannah Turner
- Proc. Amer. Math. Soc. 149 (2021), 1343-1358
- DOI: https://doi.org/10.1090/proc/15269
- Published electronically: January 13, 2021
- PDF | Request permission
Abstract:
For some families of two-bridge knots, including double twist knots with genus at least four, we determine precisely the set of integers $n>1$ such that the fundamental group of the $n$-fold cyclic branched cover of the 3-sphere along these knots is left-orderable. There are knots, including the figure-eight knot, for which this set is empty. We give the first class of hyperbolic knots, not of this type, for which these integers can be completely determined.References
- Idrissa Ba, $L$-spaces, left-orderability and two-bridge knots, J. Knot Theory Ramifications 28 (2019), no. 3, 1950019, 38. MR 3938084, DOI 10.1142/S0218216519500196
- John A. Baldwin, Heegaard Floer homology and genus one, one-boundary component open books, J. Topol. 1 (2008), no. 4, 963â992. MR 2461862, DOI 10.1112/jtopol/jtn029
- George M. Bergman, Right orderable groups that are not locally indicable, Pacific J. Math. 147 (1991), no. 2, 243â248. MR 1084707, DOI 10.2140/pjm.1991.147.243
- Michel Boileau, Steven Boyer, and Cameron McA. Gordon, Branched covers of quasipositive links and L-spaces, J. Topol. 12 (2019), no. 2, 536â576.
- Steven Boyer, Cameron McA. Gordon, and Liam Watson, On L-spaces and left-orderable fundamental groups, Math. Ann. 356 (2013), no. 4, 1213â1245. MR 3072799, DOI 10.1007/s00208-012-0852-7
- Steven Boyer and Ying Hu, Taut foliations in branched cyclic covers and left-orderable groups, Trans. Amer. Math. Soc. 372 (2019), no. 11, 7921â7957. MR 4029686, DOI 10.1090/tran/7833
- Steven Boyer, Dale Rolfsen, and Bert Wiest, Orderable 3-manifold groups, Ann. Inst. Fourier (Grenoble) 55 (2005), no. 1, 243â288 (English, with English and French summaries). MR 2141698, DOI 10.5802/aif.2098
- Gerhard Burde and Heiner Zieschang, Knots, 2nd ed., De Gruyter Studies in Mathematics, vol. 5, Walter de Gruyter & Co., Berlin, 2003. MR 1959408
- Daryl Cooper, Craig D. Hodgson, and Steven P. Kerckhoff, Three-dimensional orbifolds and cone-manifolds, MSJ Memoirs, vol. 5, Mathematical Society of Japan, Tokyo, 2000. With a postface by Sadayoshi Kojima. MR 1778789
- Marc Culler and Nathan M. Dunfield, Orderability and Dehn filling, Geom. Topol. 22 (2018), no. 3, 1405â1457. MR 3780437, DOI 10.2140/gt.2018.22.1405
- MieczysĹaw K. Da̧bkowski, JĂłzef H. Przytycki, and Amir A. Togha, Non-left-orderable 3-manifold groups, Canad. Math. Bull. 48 (2005), no. 1, 32â40. MR 2118761, DOI 10.4153/CMB-2005-003-6
- Patrick Dehornoy, Ivan Dynnikov, Dale Rolfsen, and Bert Wiest, Ordering braids, Mathematical Surveys and Monographs, vol. 148, American Mathematical Society, Providence, RI, 2008. MR 2463428, DOI 10.1090/surv/148
- David Eisenbud, Ulrich Hirsch, and Walter Neumann, Transverse foliations of Seifert bundles and self-homeomorphism of the circle, Comment. Math. Helv. 56 (1981), no. 4, 638â660. MR 656217, DOI 10.1007/BF02566232
- Xinghua Gao, Non-L-space integral homology 3-spheres with no nice orderings, Algebr. Geom. Topol. 17 (2017), no. 4, 2511â2522. MR 3686404, DOI 10.2140/agt.2017.17.2511
- C. McA. Gordon, Rileyâs conjecture on $\textrm {SL}(2,\Bbb R)$ representations of 2-bridge knots, J. Knot Theory Ramifications 26 (2017), no. 2, 1740003, 6. MR 3604485, DOI 10.1142/S021821651740003X
- Cameron Gordon and Tye Lidman, Taut foliations, left-orderability, and cyclic branched covers, Acta Math. Vietnam. 39 (2014), no. 4, 599â635. MR 3292587, DOI 10.1007/s40306-014-0091-y
- Cameron Gordon and Tye Lidman, Corrigendum to âTaut foliations, left-orderability, and cyclic branched coversâ [ MR3292587], Acta Math. Vietnam. 42 (2017), no. 4, 775â776. MR 3708042, DOI 10.1007/s40306-017-0216-1
- Mikami Hirasawa and Kunio Murasugi, Fibred double torus knots which are band-sums of torus knots, Osaka J. Math. 44 (2007), no. 1, 11â70. MR 2313026
- Jim Hoste and Patrick D. Shanahan, A formula for the A-polynomial of twist knots, J. Knot Theory Ramifications 13 (2004), no. 2, 193â209. MR 2047468, DOI 10.1142/S0218216504003081
- Ying Hu, Left-orderability and cyclic branched coverings, Algebr. Geom. Topol. 15 (2015), no. 1, 399â413. MR 3325741, DOI 10.2140/agt.2015.15.399
- AndrĂĄs JuhĂĄsz, A survey of Heegaard Floer homology, New ideas in low dimensional topology, Ser. Knots Everything, vol. 56, World Sci. Publ., Hackensack, NJ, 2015, pp. 237â296. MR 3381327, DOI 10.1142/9789814630627_{0}007
- Akio Kawauchi, A survey of knot theory, Birkhäuser Verlag, Basel, 1996. Translated and revised from the 1990 Japanese original by the author. MR 1417494
- Vu The Khoi, A cut-and-paste method for computing the Seifert volumes, Math. Ann. 326 (2003), no. 4, 759â801. MR 2003451, DOI 10.1007/s00208-003-0438-5
- Yu Li and Liam Watson, Genus one open books with non-left-orderable fundamental group, Proc. Amer. Math. Soc. 142 (2014), no. 4, 1425â1435. MR 3162262, DOI 10.1090/S0002-9939-2014-11847-8
- Takayuki Morifuji and Anh T. Tran, Twisted Alexander polynomials of 2-bridge knots for parabolic representations, Pacific J. Math. 269 (2014), no. 2, 433â451. MR 3238485, DOI 10.2140/pjm.2014.269.433
- Peter OzsvĂĄth and ZoltĂĄn SzabĂł, On the Heegaard Floer homology of branched double-covers, Adv. Math. 194 (2005), no. 1, 1â33. MR 2141852, DOI 10.1016/j.aim.2004.05.008
- Thomas Peters, On L-spaces and non left-orderable 3-manifold groups, Arxiv (2009), arXiv:0903.4495.
- Jacob Rasmussen and Sarah Dean Rasmussen, Floer simple manifolds and L-space intervals, Adv. Math. 322 (2017), 738â805. MR 3720808, DOI 10.1016/j.aim.2017.10.014
- Robert Riley, Parabolic representations of knot groups. I, Proc. London Math. Soc. (3) 24 (1972), 217â242. MR 300267, DOI 10.1112/plms/s3-24.2.217
- Robert Riley, Nonabelian representations of $2$-bridge knot groups, Quart. J. Math. Oxford Ser. (2) 35 (1984), no. 138, 191â208. MR 745421, DOI 10.1093/qmath/35.2.191
- Masakazu Teragaito, Fourfold cyclic branched covers of genus one two-bridge knots are $L$-spaces, Bol. Soc. Mat. Mex. (3) 20 (2014), no. 2, 391â403. MR 3264624, DOI 10.1007/s40590-014-0026-6
- Anh T. Tran, The universal character ring of the $(-2,2m+1,2n)$-pretzel link, Internat. J. Math. 24 (2013), no. 8, 1350063, 13. MR 3103879, DOI 10.1142/S0129167X13500638
- Anh T. Tran, On left-orderability and cyclic branched coverings, J. Math. Soc. Japan 67 (2015), no. 3, 1169â1178. MR 3376583, DOI 10.2969/jmsj/06731169
Bibliographic Information
- Hannah Turner
- Affiliation: Department of Mathematics, University of Texas at Austin, 2515 Speedway, Austin, Texas 78712
- MR Author ID: 1153043
- ORCID: 0000-0002-9026-029X
- Email: hannahturner@math.utexas.edu
- Received by editor(s): March 6, 2020
- Received by editor(s) in revised form: July 1, 2020
- Published electronically: January 13, 2021
- Additional Notes: The author was supported by an NSF graduate research fellowship under grant no. DGE-1610403.
- Communicated by: David Futer
- © Copyright 2021 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 149 (2021), 1343-1358
- MSC (2010): Primary 57M12, 20F60
- DOI: https://doi.org/10.1090/proc/15269
- MathSciNet review: 4211886