Quantitative recurrence properties for self-conformal sets
HTML articles powered by AMS MathViewer
- by Simon Baker and Michael Farmer
- Proc. Amer. Math. Soc. 149 (2021), 1127-1138
- DOI: https://doi.org/10.1090/proc/15285
- Published electronically: January 21, 2021
- PDF | Request permission
Abstract:
In this paper we study the quantitative recurrence properties of self-conformal sets $X$ equipped with the map $T:X\to X$ induced by the left shift. In particular, given a function $\varphi :\mathbb {N}\to (0,\infty ),$ we study the metric properties of the set \begin{equation*} R(T,\varphi )=\left \{x\in X:|T^nx-x|<\varphi (n)\text { for infinitely many }n\in \mathbb {N}\right \}. \end{equation*} Our main result shows that for the natural measure supported on $X$, $R(T,\varphi )$ has zero measure if a natural volume sum converges, and under the open set condition $R(T,\varphi )$ has full measure if this volume sum diverges.References
- J. Angelevska, A. Käenmäki, and S. Troscheit, Self-conformal sets with positive Hausdorff measure, Bull. London Math. Soc., 52 (2020), 200–223. doi:10.1112/blms.12320.
- Simon Baker, An analogue of Khintchine’s theorem for self-conformal sets, Math. Proc. Cambridge Philos. Soc. 167 (2019), no. 3, 567–597. MR 4015651, DOI 10.1017/s030500411800049x
- L. Barreira and B. Saussol, Hausdorff dimension of measures via Poincaré recurrence, Comm. Math. Phys. 219 (2001), no. 2, 443–463. MR 1833809, DOI 10.1007/s002200100427
- Victor Beresnevich, Detta Dickinson, and Sanju Velani, Measure theoretic laws for lim sup sets, Mem. Amer. Math. Soc. 179 (2006), no. 846, x+91. MR 2184760, DOI 10.1090/memo/0846
- Michael D. Boshernitzan, Quantitative recurrence results, Invent. Math. 113 (1993), no. 3, 617–631. MR 1231839, DOI 10.1007/BF01244320
- Yuanyang Chang, Min Wu, and Wen Wu, Quantitative recurrence properties and homogeneous self-similar sets, Proc. Amer. Math. Soc. 147 (2019), no. 4, 1453–1465. MR 3910412, DOI 10.1090/proc/14287
- N. Chernov and D. Kleinbock, Dynamical Borel-Cantelli lemmas for Gibbs measures, Israel J. Math. 122 (2001), 1–27. MR 1826488, DOI 10.1007/BF02809888
- Kenneth Falconer, Fractal geometry, 3rd ed., John Wiley & Sons, Ltd., Chichester, 2014. Mathematical foundations and applications. MR 3236784
- Kenneth Falconer, Techniques in fractal geometry, John Wiley & Sons, Ltd., Chichester, 1997. MR 1449135
- J. L. Fernández, M. V. Melián, and D. Pestana, Quantitative mixing results and inner functions, Math. Ann. 337 (2007), no. 1, 233–251. MR 2262783, DOI 10.1007/s00208-006-0036-4
- Richard Hill and Sanju L. Velani, The ergodic theory of shrinking targets, Invent. Math. 119 (1995), no. 1, 175–198. MR 1309976, DOI 10.1007/BF01245179
- John E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), no. 5, 713–747. MR 625600, DOI 10.1512/iumj.1981.30.30055
- Antti Käenmäki, On natural invariant measures on generalised iterated function systems, Ann. Acad. Sci. Fenn. Math. 29 (2004), no. 2, 419–458. MR 2097242
- Bing Li, Bao-Wei Wang, Jun Wu, and Jian Xu, The shrinking target problem in the dynamical system of continued fractions, Proc. Lond. Math. Soc. (3) 108 (2014), no. 1, 159–186. MR 3162824, DOI 10.1112/plms/pdt017
- David Ruelle, Repellers for real analytic maps, Ergodic Theory Dynam. Systems 2 (1982), no. 1, 99–107. MR 684247, DOI 10.1017/s0143385700009603
- S. Seuret and B.-W. Wang, Quantitative recurrence properties in conformal iterated function systems, Adv. Math. 280 (2015), 472–505. MR 3350227, DOI 10.1016/j.aim.2015.02.019
- V. G. Sprindžuk, A proof of Mahler’s conjecture on the measure of the set of $S$-numbers, Izv. Akad. Nauk SSSR Ser. Mat. 29 (1965), 379–436 (Russian). MR 0180527
- Bo Tan and Bao-Wei Wang, Quantitative recurrence properties for beta-dynamical system, Adv. Math. 228 (2011), no. 4, 2071–2097. MR 2836114, DOI 10.1016/j.aim.2011.06.034
- Baowei Wang and Jun Wu, A survey on the dimension theory in dynamical Diophantine approximation, Recent developments in fractals and related fields, Trends Math., Birkhäuser/Springer, Cham, 2017, pp. 261–294. MR 3775468, DOI 10.1007/978-3-319-57805-7_{1}2
Bibliographic Information
- Simon Baker
- Affiliation: School of Mathematics, University of Birmingham, Birmingham, B15 2TT, United Kingdom
- MR Author ID: 1001612
- ORCID: 0000-0002-0716-6236
- Email: simonbaker412@gmail.com
- Michael Farmer
- Affiliation: School of Mathematics, University of Bristol, Bristol, BS8 1UG, United Kingdom
- Email: michaelfarmer868@gmail.com
- Received by editor(s): February 5, 2020
- Received by editor(s) in revised form: July 6, 2020
- Published electronically: January 21, 2021
- Additional Notes: The second author was supported by the University of Warwick Undergraduate Research Support Scheme.
- Communicated by: Katrin Gelfert
- © Copyright 2021 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 149 (2021), 1127-1138
- MSC (2010): Primary 28A80, 28D05; Secondary 11K55
- DOI: https://doi.org/10.1090/proc/15285
- MathSciNet review: 4211868