Pollard waves with underlying currents
HTML articles powered by AMS MathViewer
- by David Henry and Tony Lyons
- Proc. Amer. Math. Soc. 149 (2021), 1175-1188
- DOI: https://doi.org/10.1090/proc/15309
- Published electronically: January 21, 2021
- PDF | Request permission
Abstract:
We construct an exact solution of the geophysical fluid dynamics governing equations which models waves in the presence of underlying currents, extending Pollard’s wave solution to admit underlying meridional and vertical currents at mid-latitudes. We show that these currents cannot be prescribed arbitrarily, but rather must be constant and form a velocity vector which is parallel to the Earth’s rotation vector. At the equator, there is freedom to prescribe a meridional current term which may vary both zonally and vertically.References
- Andrew Bennett, Lagrangian fluid dynamics, Cambridge Monographs on Mechanics, Cambridge University Press, Cambridge, 2006. MR 2220256, DOI 10.1017/CBO9780511734939
- J. P. Boyd, Dynamics of the Equatorial Ocean, Springer, 2018.
- Jifeng Chu, Delia Ionescu-Kruse, and Yanjuan Yang, Exact solution and instability for geophysical waves at arbitrary latitude, Discrete Contin. Dyn. Syst. 39 (2019), no. 8, 4399–4414. MR 3986293, DOI 10.3934/dcds.2019178
- Jifeng Chu, Delia Ionescu-Kruse, and Yanjuan Yang, Exact solution and instability for geophysical waves with centripetal forces and at arbitrary latitude, J. Math. Fluid Mech. 21 (2019), no. 2, Paper No. 19, 16. MR 3922917, DOI 10.1007/s00021-019-0423-8
- Didier Clamond, On the Lagrangian description of steady surface gravity waves, J. Fluid Mech. 589 (2007), 433–454. MR 2360967, DOI 10.1017/S0022112007007811
- A. Constantin, An exact solution for equatorially trapped waves, J. Geophys. Res., Oceans, 117:C05029, 2012.
- A. Constantin, Some three-dimensional nonlinear equatorial flows, J. Phys. Oceanogr., 43:165–175, 2013.
- A. Constantin, Some nonlinear, equatorially trapped, nonhydrostatic internal geophysical waves, J. Phys. Oceanogr., 44:781–789, 2014.
- A. Constantin and R. S. Johnson, A nonlinear, three-dimensional model for ocean flows, motivated by some observations of the pacific equatorial undercurrent and thermocline, Physics of Fluids, 29(5):056604, 2017.
- A. Constantin and R. S. Johnson, Ekman-type solutions for shallow-water flows on a rotating sphere: A new perspective on a classical problem, Phys. Fluids, 31:021401, 2019.
- A. Constantin and S. G. Monismith, Gerstner waves in the presence of mean currents and rotation, J. Fluid Mech. 820 (2017), 511–528. MR 3659720, DOI 10.1017/jfm.2017.223
- Benoit Cushman-Roisin and Jean-Marie Beckers, Introduction to geophysical fluid dynamics, 2nd ed., International Geophysics Series, vol. 101, Elsevier/Academic Press, Amsterdam, 2011. Physical and numerical aspects; With a foreword by John Marshall. MR 3292658
- V. W. Ekman, On the influence of earth’s rotation on ocean-currents, Ark. Mat. Astr. Fysik., 2:1–52, 1905.
- Lili Fan, Hongjun Gao, and Qingkun Xiao, An exact solution for geophysical trapped waves in the presence of an underlying current, Dyn. Partial Differ. Equ. 15 (2018), no. 3, 201–214. MR 3809640, DOI 10.4310/DPDE.2018.v15.n3.a3
- F. J. Gerstner, Theorie der wellen samt einer daraus abgeleiteten theorie der deichprofile, Abh. König. Böhm. GEs. Wiss., 1804.
- A. E. Gill, Atmosphere—Ocean dynamics, Elsevier, 2016.
- David Henry, An exact solution for equatorial geophysical water waves with an underlying current, Eur. J. Mech. B Fluids 38 (2013), 18–21. MR 3009060, DOI 10.1016/j.euromechflu.2012.10.001
- David Henry, Internal equatorial water waves in the $f$-plane, J. Nonlinear Math. Phys. 22 (2015), no. 4, 499–506. MR 3434076, DOI 10.1080/14029251.2015.1113046
- David Henry, Equatorially trapped nonlinear water waves in a $\beta$-plane approximation with centripetal forces, J. Fluid Mech. 804 (2016), R1, 11. MR 3542902, DOI 10.1017/jfm.2016.544
- David Henry, Exact equatorial water waves in the $f$-plane, Nonlinear Anal. Real World Appl. 28 (2016), 284–289. MR 3422825, DOI 10.1016/j.nonrwa.2015.10.003
- David Henry, A modified equatorial $\beta$-plane approximation modelling nonlinear wave-current interactions, J. Differential Equations 263 (2017), no. 5, 2554–2566. MR 3655791, DOI 10.1016/j.jde.2017.04.007
- D. Henry, On three-dimensional Gerstner-like equatorial water waves, Philos. Trans. Roy. Soc. A 376 (2018), no. 2111, 20170088, 16. MR 3744209, DOI 10.1098/rsta.2017.0088
- Hung-Chu Hsu, An exact solution for equatorial waves, Monatsh. Math. 176 (2015), no. 1, 143–152. MR 3296207, DOI 10.1007/s00605-014-0618-2
- Delia Ionescu-Kruse, On Pollard’s wave solution at the equator, J. Nonlinear Math. Phys. 22 (2015), no. 4, 523–530. MR 3434079, DOI 10.1080/14029251.2015.1113050
- D. Ionescu-Kruse, Instability of Pollard’s exact solution for geophysical ocean flows, Phys. Fluids, 28:086601, 2016.
- Delia Ionescu-Kruse, On the short-wavelength stabilities of some geophysical flows, Philos. Trans. Roy. Soc. A 376 (2018), no. 2111, 20170090, 21. MR 3744212, DOI 10.1098/rsta.2017.0090
- Delia Ionescu-Kruse, A three-dimensional autonomous nonlinear dynamical system modelling equatorial ocean flows, J. Differential Equations 264 (2018), no. 7, 4650–4668. MR 3758533, DOI 10.1016/j.jde.2017.12.021
- Delia Ionescu-Kruse, Exponential profiles producing genuine three-dimensional nonlinear flows relevant for equatorial ocean dynamics, J. Differential Equations 268 (2020), no. 4, 1326–1344. MR 4042344, DOI 10.1016/j.jde.2019.08.041
- R. S. Johnson, Application of the ideas and techniques of classical fluid mechanics to some problems in physical oceanography, Philos. Trans. Roy. Soc. A 376 (2018), no. 2111, 20170092, 19. MR 3744203, DOI 10.1098/rsta.2017.0092
- Mateusz Kluczek, Physical flow properties for Pollard-like internal water waves, J. Math. Phys. 59 (2018), no. 12, 123102, 12. MR 3884643, DOI 10.1063/1.5038657
- Mateusz Kluczek, Exact Pollard-like internal water waves, J. Nonlinear Math. Phys. 26 (2019), no. 1, 133–146. MR 3882400, DOI 10.1080/14029251.2019.1544794
- Mateusz Kluczek, Nonhydrostatic Pollard-like internal geophysical waves, Discrete Contin. Dyn. Syst. 39 (2019), no. 9, 5171–5183. MR 3986325, DOI 10.3934/dcds.2019210
- Mateusz Kluczek and Raphael Stuhlmeier, Mass transport for Pollard waves, Appl. Anal. (2020), in print. DOI 10.1080/00036811.2020.1766029.
- Tony Lyons, Geophysical internal equatorial waves of extreme form, Discrete Contin. Dyn. Syst. 39 (2019), no. 8, 4471–4486. MR 3986298, DOI 10.3934/dcds.2019183
- Anca-Voichita Matioc, An exact solution for geophysical equatorial edge waves over a sloping beach, J. Phys. A 45 (2012), no. 36, 365501, 10. MR 2967917, DOI 10.1088/1751-8113/45/36/365501
- Anca-Voichita Matioc, Exact geophysical waves in stratified fluids, Appl. Anal. 92 (2013), no. 11, 2254–2261. MR 3169161, DOI 10.1080/00036811.2012.727987
- J. Pedlosky, Geophysical Fluid Dynamics, Springer, 2013.
- R. T. Pollard, Surface waves with rotation: An exact solution, J. Geophys. Res., 75:5895–5898, 1970.
- Adrián Rodríguez-Sanjurjo, Global diffeomorphism of the Lagrangian flow-map for Pollard-like solutions, Ann. Mat. Pura Appl. (4) 197 (2018), no. 6, 1787–1797. MR 3855412, DOI 10.1007/s10231-018-0749-5
- F. Ursell, On the theoretical form of ocean swell on a rotating earth, Monthly Not. Roy. Astr. Soc. Geophys. Suppl. 6 (1950), 1–8. MR 0035612, DOI 10.1111/j.1365-246X.1950.tb02968.x
- G. K. Vallis, Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation, Cambridge University Press, Cambridge, U.K., 2nd edition, 2017.
Bibliographic Information
- David Henry
- Affiliation: School of Mathematical Sciences, University College Cork, Cork, Ireland
- MR Author ID: 766545
- Email: d.henry@ucc.ie
- Tony Lyons
- Affiliation: Department of Computing & Mathematics, Waterford Institute of Technology, Waterford, Ireland
- MR Author ID: 973283
- Email: tlyons@wit.ie
- Received by editor(s): May 4, 2020
- Received by editor(s) in revised form: August 4, 2020
- Published electronically: January 21, 2021
- Additional Notes: The first author acknowledges the support of the Science Foundation Ireland (SFI) grant 13/CDA/2117.
- Communicated by: Catherine Sulem
- © Copyright 2021 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 149 (2021), 1175-1188
- MSC (2020): Primary 35Q35, 76B15; Secondary 37N10
- DOI: https://doi.org/10.1090/proc/15309
- MathSciNet review: 4211872