Positive intertwiners for Bessel functions of type B
HTML articles powered by AMS MathViewer
- by Margit Rösler and Michael Voit
- Proc. Amer. Math. Soc. 149 (2021), 1151-1163
- DOI: https://doi.org/10.1090/proc/15312
- Published electronically: January 21, 2021
- PDF | Request permission
Abstract:
Let $V_k$ denote Dunkl’s intertwining operator for the root sytem $B_n$ with multiplicity $k=(k_1,k_2)$ with $k_1\geq 0, k_2>0$. It was recently shown that the positivity of the operator $V_{k^\prime \!,k} = V_{k^\prime }\circ V_k^{-1}$ which intertwines the Dunkl operators associated with $k$ and $k^\prime =(k_1+h,k_2)$ implies that $h\in [k_2(n-1),\infty [ \cup (\{0,k_2,\ldots ,k_2(n-1)\}-\mathbb Z_+)$. This is also a necessary condition for the existence of positive Sonine formulas between the associated Bessel functions. In this paper we present two partial converse positive results: for $k_1 \geq 0, k_2\in \{1/2,1,2\}$ and $h>k_2(n-1)$, the operator $V_{k^\prime \!,k}$ is positive when restricted to functions which are invariant under the Weyl group, and there is an associated positive Sonine formula for the Bessel functions of type $B_n$. Moreover, the same positivity results hold for arbitrary $k_1\geq 0, k_2>0$ and $h\in k_2\cdot \mathbb Z_+.$ The proof is based on a formula of Baker and Forrester on connection coefficients between multivariate Laguerre polynomials and an approximation of Bessel functions by Laguerre polynomials.References
- Richard Askey, Orthogonal polynomials and special functions, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1975. MR 0481145, DOI 10.1137/1.9781611970470
- T. H. Baker and P. J. Forrester, The Calogero-Sutherland model and generalized classical polynomials, Comm. Math. Phys. 188 (1997), no. 1, 175–216. MR 1471336, DOI 10.1007/s002200050161
- T. H. Baker and P. J. Forrester, Nonsymmetric Jack polynomials and integral kernels, Duke Math. J. 95 (1998), no. 1, 1–50. MR 1646546, DOI 10.1215/S0012-7094-98-09501-1
- Charles F. Dunkl, Differential-difference operators associated to reflection groups, Trans. Amer. Math. Soc. 311 (1989), no. 1, 167–183. MR 951883, DOI 10.1090/S0002-9947-1989-0951883-8
- Charles F. Dunkl, Integral kernels with reflection group invariance, Canad. J. Math. 43 (1991), no. 6, 1213–1227. MR 1145585, DOI 10.4153/CJM-1991-069-8
- C. F. Dunkl, M. F. E. de Jeu, and E. M. Opdam, Singular polynomials for finite reflection groups, Trans. Amer. Math. Soc. 346 (1994), no. 1, 237–256. MR 1273532, DOI 10.1090/S0002-9947-1994-1273532-6
- Charles F. Dunkl and Yuan Xu, Orthogonal polynomials of several variables, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 155, Cambridge University Press, Cambridge, 2014. MR 3289583, DOI 10.1017/CBO9781107786134
- Jacques Faraut, Asymptotic spherical analysis on the Heisenberg group, Colloq. Math. 118 (2010), no. 1, 233–258. MR 2600528, DOI 10.4064/cm118-1-13
- Jacques Faraut and Adam Korányi, Analysis on symmetric cones, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1994. Oxford Science Publications. MR 1446489
- S. G. Gindikin, Invariant generalized functions in homogeneous domains, Funkcional. Anal. i Priložen. 9 (1975), no. 1, 56–58 (Russian). MR 0377423
- Kenneth I. Gross and Donald St. P. Richards, Special functions of matrix argument. I. Algebraic induction, zonal polynomials, and hypergeometric functions, Trans. Amer. Math. Soc. 301 (1987), no. 2, 781–811. MR 882715, DOI 10.1090/S0002-9947-1987-0882715-2
- Sigurdur Helgason, Groups and geometric analysis, Mathematical Surveys and Monographs, vol. 83, American Mathematical Society, Providence, RI, 2000. Integral geometry, invariant differential operators, and spherical functions; Corrected reprint of the 1984 original. MR 1790156, DOI 10.1090/surv/083
- Carl S. Herz, Bessel functions of matrix argument, Ann. of Math. (2) 61 (1955), 474–523. MR 69960, DOI 10.2307/1969810
- Marcel de Jeu, Paley-Wiener theorems for the Dunkl transform, Trans. Amer. Math. Soc. 358 (2006), no. 10, 4225–4250. MR 2231377, DOI 10.1090/S0002-9947-06-03960-2
- Kevin W. J. Kadell, The Selberg-Jack symmetric functions, Adv. Math. 130 (1997), no. 1, 33–102. MR 1467311, DOI 10.1006/aima.1997.1642
- Olav Kallenberg, Foundations of modern probability, Probability and its Applications (New York), Springer-Verlag, New York, 1997. MR 1464694
- Jyoichi Kaneko, Selberg integrals and hypergeometric functions associated with Jack polynomials, SIAM J. Math. Anal. 24 (1993), no. 4, 1086–1110. MR 1226865, DOI 10.1137/0524064
- Friedrich Knop and Siddhartha Sahi, A recursion and a combinatorial formula for Jack polynomials, Invent. Math. 128 (1997), no. 1, 9–22. MR 1437493, DOI 10.1007/s002220050134
- Michel Lassalle, Une formule du binôme généralisée pour les polynômes de Jack, C. R. Acad. Sci. Paris Sér. I Math. 310 (1990), no. 5, 253–256 (French, with English summary). MR 1042857
- I. G. Macdonald, Commuting differential operators and zonal spherical functions, Algebraic groups Utrecht 1986, Lecture Notes in Math., vol. 1271, Springer, Berlin, 1987, pp. 189–200. MR 911140, DOI 10.1007/BFb0079238
- A. Okounkov and G. Olshanski, Shifted Jack polynomials, binomial formula, and applications, Math. Res. Lett. 4 (1997), no. 1, 69–78. MR 1432811, DOI 10.4310/MRL.1997.v4.n1.a7
- E. M. Opdam, Dunkl operators, Bessel functions and the discriminant of a finite Coxeter group, Compositio Math. 85 (1993), no. 3, 333–373. MR 1214452
- Margit Rösler, Positivity of Dunkl’s intertwining operator, Duke Math. J. 98 (1999), no. 3, 445–463. MR 1695797, DOI 10.1215/S0012-7094-99-09813-7
- Margit Rösler, Bessel convolutions on matrix cones, Compos. Math. 143 (2007), no. 3, 749–779. MR 2330446, DOI 10.1112/S0010437X06002594
- Margit Rösler, Riesz distributions and Laplace transform in the Dunkl setting of type A, J. Funct. Anal. 278 (2020), no. 12, 108506, 29. MR 4078528, DOI 10.1016/j.jfa.2020.108506
- Margit Rösler and Michael Voit, Markov processes related with Dunkl operators, Adv. in Appl. Math. 21 (1998), no. 4, 575–643. MR 1652182, DOI 10.1006/aama.1998.0609
- Margit Rösler and Michael Voit, A limit relation for Dunkl-Bessel functions of type A and B, SIGMA Symmetry Integrability Geom. Methods Appl. 4 (2008), Paper 083, 9. MR 2470513, DOI 10.3842/SIGMA.2008.083
- Margit Rösler and Michael Voit, Beta distributions and Sonine integrals for Bessel functions on symmetric cones, Stud. Appl. Math. 141 (2018), no. 4, 474–500. MR 3879967, DOI 10.1111/sapm.12217
- M. Rösler and M. Voit, Sonine formulas and intertwining operators in Dunkl theory, to appear in Int. Math. Res. Not. IMRN (2020), https://doi.org/10.1093/imrn/rnz313.
- Siddhartha Sahi, A new scalar product for nonsymmetric Jack polynomials, Internat. Math. Res. Notices 20 (1996), 997–1004. MR 1422372, DOI 10.1155/S107379289600061X
- Siddhartha Sahi, Binomial coefficients and Littlewood-Richardson coefficients for Jack polynomials, Int. Math. Res. Not. IMRN 7 (2011), 1597–1612. MR 2806516, DOI 10.1093/imrn/rnq126
- Richard P. Stanley, Some combinatorial properties of Jack symmetric functions, Adv. Math. 77 (1989), no. 1, 76–115. MR 1014073, DOI 10.1016/0001-8708(89)90015-7
- Michael Voit, Multidimensional Heisenberg convolutions and product formulas for multivariate Laguerre polynomials, Colloq. Math. 123 (2011), no. 2, 149–179. MR 2811169, DOI 10.4064/cm123-2-1
- Yuan Xu, An integral formula for generalized Gegenbauer polynomials and Jacobi polynomials, Adv. in Appl. Math. 29 (2002), no. 2, 328–343. MR 1928103, DOI 10.1016/S0196-8858(02)00017-9
Bibliographic Information
- Margit Rösler
- Affiliation: Institut für Mathematik, Universität Paderborn, Warburger Str. 100, D-33098 Paderborn, Germany
- MR Author ID: 312683
- Email: roesler@math.upb.de
- Michael Voit
- Affiliation: Fakultät Mathematik, Technische Universität Dortmund, Vogelpothsweg 87, D-44221 Dortmund, Germany
- MR Author ID: 253279
- ORCID: 0000-0003-3561-2712
- Email: michael.voit@math.tu-dortmund.de
- Received by editor(s): January 2, 2020
- Received by editor(s) in revised form: August 2, 2020
- Published electronically: January 21, 2021
- Communicated by: Yuan Xu
- © Copyright 2021 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 149 (2021), 1151-1163
- MSC (2010): Primary 33C52; Secondary 33C67, 43A85
- DOI: https://doi.org/10.1090/proc/15312
- MathSciNet review: 4211870