Piltz divisor problem over number fields à la Voronoï
HTML articles powered by AMS MathViewer
- by Soumyarup Banerjee
- Proc. Amer. Math. Soc. 149 (2021), 1025-1038
- DOI: https://doi.org/10.1090/proc/15324
- Published electronically: January 22, 2021
- PDF | Request permission
Abstract:
In this article, we study the Piltz divisor problem, which is sometimes called the generalized Dirichlet divisor problem, over number fields. We establish an identity akin to Voronoï’s formula concerning the error term in the Dirichlet divisor problem.References
- Raymond Ayoub, An introduction to the analytic theory of numbers, Mathematical Surveys, No. 10, American Mathematical Society, Providence, R.I., 1963. MR 0160743
- Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger, and Francesco G. Tricomi, Higher transcendental functions. Vols. I, II, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1953. Based, in part, on notes left by Harry Bateman. MR 0058756
- Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger, and Francesco G. Tricomi, Higher transcendental functions. Vols. I, II, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1953. Based, in part, on notes left by Harry Bateman. MR 0058756
- J. Bourgain and N. Watt, Mean square of zeta function, circle problem and divisor problem revisited, Preprint, (2017), arXiv:1709.04340.
- K. Chandrasekharan and S. Minakshisundaram, Typical means, Oxford University Press, 1952. MR 0055458
- Harold Davenport, Multiplicative number theory, Lectures in Advanced Mathematics, No. 1, Markham Publishing Co., Chicago, Ill., 1967. Lectures given at the University of Michigan, Winter Term, 1966. MR 0217022
- G. H. Hardy and M. Riesz, The general theory of Dirichlet’s series, Cambridge University Press, Cambridge (1915).
- Henryk Iwaniec and Emmanuel Kowalski, Analytic number theory, American Mathematical Society Colloquium Publications, vol. 53, American Mathematical Society, Providence, RI, 2004. MR 2061214, DOI 10.1090/coll/053
- Shigeru Kanemitsu and Haruo Tsukada, Contributions to the theory of zeta-functions, Series on Number Theory and its Applications, vol. 10, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2015. The modular relation supremacy. MR 3329611, DOI 10.1142/8711
- K. Krishnarjun, On the number of integral ideal of a number field, Preprint, (2020), arXiv:2002.06342.
- Serge Lang, Algebraic number theory, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London-Don Mills, Ont., 1970. MR 0282947
- Werner Georg Nowak, On the distribution of integer ideals in algebraic number fields, Math. Nachr. 161 (1993), 59–74. MR 1251010, DOI 10.1002/mana.19931610107
- S. W. P. Steen, Divisor Functions: Their Differential Equations and Recurrence Formulae, Proc. London Math. Soc. (2) 31 (1930), no. 1, 47–80. MR 1577480, DOI 10.1112/plms/s2-31.1.47
- Wataru Takeda, Uniform bounds of the Piltz divisor problem over number fields, Pacific J. Math. 301 (2019), no. 2, 601–616. MR 4023360, DOI 10.2140/pjm.2019.301.601
- Georges Voronoï, Sur une fonction transcendante et ses applications à la sommation de quelques séries (suite), Ann. Sci. École Norm. Sup. (3) 21 (1904), 459–533 (French). MR 1509047, DOI 10.24033/asens.545
- Nian Liang Wang and Soumyarup Banerjee, On the product of Hurwitz zeta-functions, Proc. Japan Acad. Ser. A Math. Sci. 93 (2017), no. 5, 31–36. MR 3645657, DOI 10.3792/pjaa.93.31
Bibliographic Information
- Soumyarup Banerjee
- Affiliation: Discipline of Mathematics, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
- MR Author ID: 1209968
- Email: soumya.tatan@gmail.com
- Received by editor(s): April 27, 2020
- Received by editor(s) in revised form: July 2, 2020
- Published electronically: January 22, 2021
- Additional Notes: The research of the author was supported by grants from the Research Grants Council of the Hong Kong SAR, China.
- Communicated by: Amanda Folsom
- © Copyright 2021 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 149 (2021), 1025-1038
- MSC (2020): Primary 11R42, 11R11, 11S40, 33C60
- DOI: https://doi.org/10.1090/proc/15324
- MathSciNet review: 4211859