The closing lemma and the planar general density theorem for Sobolev maps
HTML articles powered by AMS MathViewer
- by Assis Azevedo, Davide Azevedo, Mário Bessa and Maria Joana Torres
- Proc. Amer. Math. Soc. 149 (2021), 1687-1696
- DOI: https://doi.org/10.1090/proc/15352
- Published electronically: February 12, 2021
- PDF | Request permission
Abstract:
We prove that given a non-wandering point of a Sobolev-$(1,p)$ homeomorphism we can create closed trajectories by making arbitrarily small perturbations. As an application, in the planar case, we obtain that generically the closed trajectories are dense in the non-wandering set.References
- Marie-Claude Arnaud, $C^1$-generic billiard tables have a dense set of periodic points, Regul. Chaotic Dyn. 18 (2013), no. 6, 697–702. MR 3146587, DOI 10.1134/S1560354713060099
- Masayuki Asaoka and Kei Irie, A $C^\infty$ closing lemma for Hamiltonian diffeomorphisms of closed surfaces, Geom. Funct. Anal. 26 (2016), no. 5, 1245–1254. MR 3568031, DOI 10.1007/s00039-016-0386-3
- Assis Azevedo, Davide Azevedo, Mário Bessa, and Maria Joana Torres, Sobolev homeomorphisms are dense in volume preserving automorphisms, J. Funct. Anal. 276 (2019), no. 10, 3261–3274. MR 3944293, DOI 10.1016/j.jfa.2018.10.008
- Mário Bessa and Maria Joana Torres, The $C^0$ general density theorem for geodesic flows, C. R. Math. Acad. Sci. Paris 353 (2015), no. 6, 545–549 (English, with English and French summaries). MR 3348990, DOI 10.1016/j.crma.2015.03.012
- Mário Bessa, Maria Joana Torres, and Paulo Varandas, On the periodic orbits, shadowing and strong transitivity of continuous flows, Nonlinear Anal. 175 (2018), 191–209. MR 3830728, DOI 10.1016/j.na.2018.06.002
- E. M. Coven, J. Madden, and Z. Nitecki, A note on generic properties of continuous maps, Ergodic theory and dynamical systems, II (College Park, Md., 1979/1980), Progr. Math., vol. 21, Birkhäuser, Boston, Mass., 1982, pp. 97–101. MR 670076
- Edson de Faria, Peter Hazard, and Charles Tresser, Infinite entropy is generic in Hölder and Sobolev spaces, C. R. Math. Acad. Sci. Paris 355 (2017), no. 11, 1185–1189 (English, with English and French summaries). MR 3724883, DOI 10.1016/j.crma.2017.10.016
- E. de Faria, P. Hazard, and C. Tresser, Genericity of infinite entropy for maps with low regularity, Preprint ArXiv 2017.
- Mike Hurley, On proofs of the $C^0$ general density theorem, Proc. Amer. Math. Soc. 124 (1996), no. 4, 1305–1309. MR 1307531, DOI 10.1090/S0002-9939-96-03184-X
- Stanislav Hencl and Aldo Pratelli, Diffeomorphic approximation of $W^{1,1}$ planar Sobolev homeomorphisms, J. Eur. Math. Soc. (JEMS) 20 (2018), no. 3, 597–656. MR 3776275, DOI 10.4171/JEMS/774
- Michael-R. Herman, Différentiabilité optimale et contre-exemples à la fermeture en topologie $C^\infty$ des orbites récurrentes de flots hamiltoniens, C. R. Acad. Sci. Paris Sér. I Math. 313 (1991), no. 1, 49–51 (French, with English summary). MR 1115947
- Morris W. Hirsch, Differential topology, Graduate Texts in Mathematics, vol. 33, Springer-Verlag, New York, 1994. Corrected reprint of the 1976 original. MR 1336822
- Tadeusz Iwaniec, Leonid V. Kovalev, and Jani Onninen, Diffeomorphic approximation of Sobolev homeomorphisms, Arch. Ration. Mech. Anal. 201 (2011), no. 3, 1047–1067. MR 2824471, DOI 10.1007/s00205-011-0404-4
- John C. Oxtoby, Measure and category, 2nd ed., Graduate Texts in Mathematics, vol. 2, Springer-Verlag, New York-Berlin, 1980. A survey of the analogies between topological and measure spaces. MR 584443, DOI 10.1007/978-1-4684-9339-9
- Charles C. Pugh, The closing lemma, Amer. J. Math. 89 (1967), 956–1009. MR 226669, DOI 10.2307/2373413
- Charles C. Pugh, An improved closing lemma and a general density theorem, Amer. J. Math. 89 (1967), 1010–1021. MR 226670, DOI 10.2307/2373414
- Charles Pugh, Against the $C^{2}$ closing lemma, J. Differential Equations 17 (1975), 435–443. MR 368079, DOI 10.1016/0022-0396(75)90054-6
- Charles C. Pugh and Clark Robinson, The $C^{1}$ closing lemma, including Hamiltonians, Ergodic Theory Dynam. Systems 3 (1983), no. 2, 261–313. MR 742228, DOI 10.1017/S0143385700001978
- Ludovic Rifford, Closing geodesics in $C^1$ topology, J. Differential Geom. 91 (2012), no. 3, 361–381. MR 2981842
- S. Smale, Stable manifolds for differential equations and diffeomorphisms, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 17 (1963), 97–116. MR 165537
- Lan Wen, The $C^1$ closing lemma for nonsingular endomorphisms, Ergodic Theory Dynam. Systems 11 (1991), no. 2, 393–412. MR 1116648, DOI 10.1017/S0143385700006210
Bibliographic Information
- Assis Azevedo
- Affiliation: CMAT e Departamento de Matemática, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- MR Author ID: 244078
- ORCID: 0000-0002-6284-8045
- Email: assis@math.uminho.pt
- Davide Azevedo
- Affiliation: Departamento de Matemática, Universidade Federal da Bahia, Av. Ademar de Barros s/n, 40170-110 Salvador, Brasil
- MR Author ID: 1116344
- ORCID: 0000-0003-1727-9602
- Email: davidemsa@gmail.com
- Mário Bessa
- Affiliation: Departamento de Matemática, Universidade da Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal
- MR Author ID: 804955
- ORCID: 0000-0002-1758-2225
- Email: bessa@ubi.pt
- Maria Joana Torres
- Affiliation: CMAT e Departamento de Matemática, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- MR Author ID: 778192
- ORCID: 0000-0002-3673-5776
- Email: jtorres@math.uminho.pt
- Received by editor(s): October 23, 2018
- Received by editor(s) in revised form: January 15, 2019, and September 11, 2020
- Published electronically: February 12, 2021
- Additional Notes: The first and fourth authors were partially supported by the Research Centre of Mathematics of the University of Minho with the Portuguese Funds from the “Fundação para a Ciência e a Tecnologia”, through the Project UID/MAT/00013/2013. The third and fourth authors were partially supported by the Project “New trends in Lyapunov exponents” (PTDC/MAT-PUR/29126/2017).
- Communicated by: Nimish Shah
- © Copyright 2021 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 149 (2021), 1687-1696
- MSC (2020): Primary 46E35, 37B20; Secondary 37C25
- DOI: https://doi.org/10.1090/proc/15352
- MathSciNet review: 4242323