Orthogonal sums in Kreĭn spaces
HTML articles powered by AMS MathViewer
- by James Rovnyak
- Proc. Amer. Math. Soc. 149 (2021), 1999-2010
- DOI: https://doi.org/10.1090/proc/14718
- Published electronically: February 24, 2021
- PDF | Request permission
Abstract:
Infinite orthogonal families of regular subspaces of a Kreĭn space exhibit a wide range of behavior. An elementary method is used to show that conditions on sums of projections produce behavior similar to that of orthogonal closed subspaces of a Hilbert space.References
- T. Ya. Azizov and I. S. Iokhvidov, Linear operators in spaces with an indefinite metric, Pure and Applied Mathematics (New York), John Wiley & Sons, Ltd., Chichester, 1989. Translated from the Russian by E. R. Dawson; A Wiley-Interscience Publication. MR 1033489
- János Bognár, Indefinite inner product spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 78, Springer-Verlag, New York-Heidelberg, 1974. MR 0467261, DOI 10.1007/978-3-642-65567-8
- Michael A. Dritschel and James Rovnyak, Operators on indefinite inner product spaces, Lectures on operator theory and its applications (Waterloo, ON, 1994) Fields Inst. Monogr., vol. 3, Amer. Math. Soc., Providence, RI, 1996, pp. 141–232. MR 1364446
- Aurelian Gheondea, On the geometry of pseudoregular subspaces of a Kreĭn space, Spectral theory of linear operators and related topics (Timişoara/Herculane, 1983) Oper. Theory Adv. Appl., vol. 14, Birkhäuser, Basel, 1984, pp. 141–156. MR 789614
- Paul R. Halmos, Introduction to Hilbert Space and the theory of Spectral Multiplicity, Chelsea Publishing Co., New York, N. Y., 1951. MR 0045309
- G. Mackey, Commutative Banach algebras, multigraphed Harvard lecture notes, by A. Blair, 1952.
- Alejandra Maestripieri and Francisco Martínez Pería, Normal projections in Krein spaces, Integral Equations Operator Theory 76 (2013), no. 3, 357–380. MR 3065299, DOI 10.1007/s00020-013-2063-3
- Brian W. McEnnis, Shifts on indefinite inner product spaces, Pacific J. Math. 81 (1979), no. 1, 113–130. MR 543738, DOI 10.2140/pjm.1979.81.113
- Brian W. McEnnis, Shifts on indefinite inner product spaces. II, Pacific J. Math. 100 (1982), no. 1, 177–183. MR 661447, DOI 10.2140/pjm.1982.100.177
- Brian W. McEnnis, Shifts on Kreĭn spaces, Operator theory: operator algebras and applications, Part 2 (Durham, NH, 1988) Proc. Sympos. Pure Math., vol. 51, Amer. Math. Soc., Providence, RI, 1990, pp. 201–211. MR 1077439, DOI 10.1090/pspum/051.2/1077439
- John Wermer, Commuting spectral measures on Hilbert space, Pacific J. Math. 4 (1954), 355–361. MR 63564, DOI 10.2140/pjm.1954.4.355
Bibliographic Information
- James Rovnyak
- Affiliation: Department of Mathematics, University of Virginia, P.O. Box 400137, Charlottesville, Virginia 22904
- MR Author ID: 151250
- Email: rovnyak@virginia.edu
- Received by editor(s): March 10, 2019
- Received by editor(s) in revised form: May 24, 2019
- Published electronically: February 24, 2021
- Communicated by: Stephan Ramon Garcia
- © Copyright 2021 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 149 (2021), 1999-2010
- MSC (2020): Primary 47B50; Secondary 47A05, 46C20
- DOI: https://doi.org/10.1090/proc/14718
- MathSciNet review: 4232192