## Springer motives

HTML articles powered by AMS MathViewer

- by Jens Niklas Eberhardt PDF
- Proc. Amer. Math. Soc.
**149**(2021), 1845-1856

## Abstract:

We show that the motive of a Springer fiber is pure Tate. We then consider a category of equivariant Springer motives on the nilpotent cone and construct an equivalence to the derived category of graded modules over the graded affine Hecke algebra.## References

- Joseph Ayoub,
*A guide to (étale) motivic sheaves*, Proceedings of the International Congress of Mathematicians—Seoul 2014. Vol. II, Kyung Moon Sa, Seoul, 2014, pp. 1101–1124. MR**3728654** - Joseph Bernstein and Valery Lunts,
*Equivariant sheaves and functors*, Lecture Notes in Mathematics, vol. 1578, Springer-Verlag, Berlin, 1994. MR**1299527**, DOI 10.1007/BFb0073549 - Patrick Brosnan,
*On motivic decompositions arising from the method of Białynicki-Birula*, Invent. Math.**161**(2005), no. 1, 91–111. MR**2178658**, DOI 10.1007/s00222-004-0419-7 - Neil Chriss and Victor Ginzburg,
*Representation theory and complex geometry*, Modern Birkhäuser Classics, Birkhäuser Boston, Ltd., Boston, MA, 2010. Reprint of the 1997 edition. MR**2838836**, DOI 10.1007/978-0-8176-4938-8 - C. De Concini, G. Lusztig, and C. Procesi,
*Homology of the zero-set of a nilpotent vector field on a flag manifold*, J. Amer. Math. Soc.**1**(1988), no. 1, 15–34. MR**924700**, DOI 10.1090/S0894-0347-1988-0924700-2 - Jens Niklas Eberhardt,
*$K$-Motives and Koszul Duality*, 2019. - Jens Niklas Eberhardt and Shane Kelly,
*Mixed motives and geometric representation theory in equal characteristic*, Selecta Math. (N.S.)**25**(2019), no. 2, Paper No. 30, 54. MR**3935029**, DOI 10.1007/s00029-019-0475-x - Annette Huber and Bruno Kahn,
*The slice filtration and mixed Tate motives*, Compos. Math.**142**(2006), no. 4, 907–936. MR**2249535**, DOI 10.1112/S0010437X06002107 - Marc Hoyois,
*Cdh descent in equivariant homotopy $K$-theory*, 2016. - Marc Hoyois,
*The six operations in equivariant motivic homotopy theory*, Adv. Math.**305**(2017), 197–279. MR**3570135**, DOI 10.1016/j.aim.2016.09.031 - Jens Carsten Jantzen,
*Nilpotent orbits in representation theory*, Lie theory, Progr. Math., vol. 228, Birkhäuser Boston, Boston, MA, 2004, pp. 1–211. MR**2042689** - Shane Kelly,
*Voevodsky motives and $l$dh-descent*, Astérisque**391**(2017), 125 (English, with English and French summaries). MR**3673293** - George Lusztig,
*Affine Hecke algebras and their graded version*, J. Amer. Math. Soc.**2**(1989), no. 3, 599–635. MR**991016**, DOI 10.1090/S0894-0347-1989-0991016-9 - Carlo Mazza, Vladimir Voevodsky, and Charles Weibel,
*Lecture notes on motivic cohomology*, Clay Mathematics Monographs, vol. 2, American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2006. MR**2242284** - Laura Rider,
*Formality for the nilpotent cone and a derived Springer correspondence*, Adv. Math.**235**(2013), 208–236. MR**3010057**, DOI 10.1016/j.aim.2012.12.001 - Laura Rider and Amber Russell,
*Perverse sheaves on the nilpotent cone and Lusztig’s generalized Springer correspondence*, Lie algebras, Lie superalgebras, vertex algebras and related topics, Proc. Sympos. Pure Math., vol. 92, Amer. Math. Soc., Providence, RI, 2016, pp. 273–292. MR**3644235**, DOI 10.1007/s10468-020-09966-w - Laura Rider and Amber Russell,
*Formality and Lusztig’s generalized Springer correspondence*, arXiv preprint arXiv:1708.07783 (2017). - Wolfgang Soergel, Rahbar Virk, and Matthias Wendt,
*Equivariant motives and geometric representation theory. (with an appendix by F. Hörmann and M. Wendt)*, arXiv preprint arXiv:1809.05480 (2018). - Wolfgang Soergel and Matthias Wendt,
*Perverse motives and graded derived category ${\mathcal {O}}$*, J. Inst. Math. Jussieu**17**(2018), no. 2, 347–395. MR**3773272**, DOI 10.1017/S1474748016000013 - Gufang Zhao and Changlong Zhong,
*Geometric representations of the formal affine Hecke algebra*, Adv. Math.**317**(2017), 50–90. MR**3682663**, DOI 10.1016/j.aim.2017.03.026

## Additional Information

**Jens Niklas Eberhardt**- Affiliation: Max Planck Institute for Mathematics, Vivatsgasse 7, 53111 Bonn, Germany
- MR Author ID: 1079619
- Email: mail@jenseberhardt.com
- Received by editor(s): January 9, 2019
- Received by editor(s) in revised form: April 13, 2020
- Published electronically: March 1, 2021
- Communicated by: Alexander Braverman
- © Copyright 2021 Copyright by the author
- Journal: Proc. Amer. Math. Soc.
**149**(2021), 1845-1856 - MSC (2020): Primary 20C08
- DOI: https://doi.org/10.1090/proc/15290
- MathSciNet review: 4232181