Expansions of the real field by discrete subgroups of $\operatorname {Gl}_n(\mathbb {C})$
HTML articles powered by AMS MathViewer
- by Philipp Hieronymi, Erik Walsberg and Samantha Xu
- Proc. Amer. Math. Soc. 149 (2021), 2221-2233
- DOI: https://doi.org/10.1090/proc/15382
- Published electronically: March 1, 2021
- PDF | Request permission
Abstract:
Let $\Gamma$ be an infinite discrete subgroup of Gl$_n(\mathbb {C})$. Then either $(\mathbb {R},<,+,\cdot ,\Gamma )$ is interdefinable with $(\mathbb {R},<,+,\cdot , \lambda ^{\mathbb {Z}})$ for some real number $\lambda$, or $(\mathbb {R},<,+,\cdot ,\Gamma )$ defines the set of integers. When $\Gamma$ is not virtually abelian, the second case holds.References
- Oleg Belegradek and Boris Zilber, The model theory of the field of reals with a subgroup of the unit circle, J. Lond. Math. Soc. (2) 78 (2008), no. 3, 563–579. MR 2456892, DOI 10.1112/jlms/jdn037
- Erin Caulfield, On expansions of the real field by complex subgroups, Ann. Pure Appl. Logic 168 (2017), no. 6, 1308–1334. MR 3628275, DOI 10.1016/j.apal.2017.01.002
- Claude Chevalley, Theory of Lie Groups. I, Princeton Mathematical Series, vol. 8, Princeton University Press, Princeton, N. J., 1946. MR 0015396, DOI 10.1515/9781400883851
- Lou van den Dries, The field of reals with a predicate for the powers of two, Manuscripta Math. 54 (1985), no. 1-2, 187–195. MR 808687, DOI 10.1007/BF01171706
- Lou van den Dries and Ayhan Günaydın, The fields of real and complex numbers with a small multiplicative group, Proc. London Math. Soc. (3) 93 (2006), no. 1, 43–81. MR 2235481, DOI 10.1017/S0024611506015747
- Rostislav Grigorchuk and Igor Pak, Groups of intermediate growth: an introduction, Enseign. Math. (2) 54 (2008), no. 3-4, 251–272. MR 2478087
- Mikhael Gromov, Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math. 53 (1981), 53–73. MR 623534, DOI 10.1007/BF02698687
- Ayhan Gunaydin, Model theory of fields with multiplicative groups, ProQuest LLC, Ann Arbor, MI, 2008. Thesis (Ph.D.)–University of Illinois at Urbana-Champaign. MR 2712584
- Ayhan Günaydin and Philipp Hieronymi, Dependent pairs, J. Symbolic Logic 76 (2011), no. 2, 377–390. MR 2830406, DOI 10.2178/jsl/1305810753
- Juha Heinonen, Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New York, 2001. MR 1800917, DOI 10.1007/978-1-4613-0131-8
- Philipp Hieronymi, Defining the set of integers in expansions of the real field by a closed discrete set, Proc. Amer. Math. Soc. 138 (2010), no. 6, 2163–2168. MR 2596055, DOI 10.1090/S0002-9939-10-10268-8
- Philipp Hieronymi, Expansions of subfields of the real field by a discrete set, Fund. Math. 215 (2011), no. 2, 167–175. MR 2860183, DOI 10.4064/fm215-2-4
- Philipp Hieronymi, The real field with an irrational power function and a dense multiplicative subgroup, J. Lond. Math. Soc. (2) 83 (2011), no. 1, 153–167. MR 2763949, DOI 10.1112/jlms/jdq058
- Philipp Hieronymi and Chris Miller, Metric dimensions and tameness in expansions of the real field, Trans. Amer. Math. Soc. 373 (2020), no. 2, 849–874. MR 4068252, DOI 10.1090/tran/7691
- Philipp Hieronymi and Travis Nell, Distal and non-distal pairs, J. Symb. Log. 82 (2017), no. 1, 375–383. MR 3631293, DOI 10.1017/jsl.2016.28
- Philipp Hieronymi, Travis Nell, and Erik Walsberg, Wild theories with o-minimal open core, Ann. Pure Appl. Logic 169 (2018), no. 2, 146–163. MR 3725204, DOI 10.1016/j.apal.2017.10.002
- Alexander S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156, Springer-Verlag, New York, 1995. MR 1321597, DOI 10.1007/978-1-4612-4190-4
- A. I. Mal′cev, On some classes of infinite soluble groups, Mat. Sbornik N.S. 28(70) (1951), 567–588 (Russian). MR 0043088
- Chris Miller, Tameness in expansions of the real field, Logic Colloquium ’01, Lect. Notes Log., vol. 20, Assoc. Symbol. Logic, Urbana, IL, 2005, pp. 281–316. MR 2143901
- C. Miller, Definable choice in d-minimal expansions of ordered groups, https://people.math.osu.edu/miller.1987/eidmin.pdf, 2006. Unpublished note.
- Chris Miller and Patrick Speissegger, Expansions of the real line by open sets: o-minimality and open cores, Fund. Math. 162 (1999), no. 3, 193–208. MR 1736360
- John Milnor, Growth of finitely generated solvable groups, J. Differential Geometry 2 (1968), 447–449. MR 244899
- G. A. Noskov, The elementary theory of a finitely generated almost solvable group, Izv. Akad. Nauk SSSR Ser. Mat. 47 (1983), no. 3, 498–517 (Russian). MR 703594
- Alf Onshuus and Mariana Vicaría, Definable groups in models of Presburger arithmetic, Ann. Pure Appl. Logic 171 (2020), no. 6, 102795, 27. MR 4083002, DOI 10.1016/j.apal.2020.102795
- Y. Peterzil, A. Pillay, and S. Starchenko, Linear groups definable in o-minimal structures, J. Algebra 247 (2002), no. 1, 1–23. MR 1873380, DOI 10.1006/jabr.2001.8861
- Julia Robinson, Definability and decision problems in arithmetic, J. Symbolic Logic 14 (1949), 98–114. MR 31446, DOI 10.2307/2266510
- Atle Selberg, On discontinuous groups in higher-dimensional symmetric spaces, Contributions to function theory (Internat. Colloq. Function Theory, Bombay, 1960) Tata Institute of Fundamental Research, Bombay, 1960, pp. 147–164. MR 0130324
- J. Tits, Free subgroups in linear groups, J. Algebra 20 (1972), 250–270. MR 286898, DOI 10.1016/0021-8693(72)90058-0
- Michael A. Tychonievich, Tameness results for expansions of the real field by groups, ProQuest LLC, Ann Arbor, MI, 2013. Thesis (Ph.D.)–The Ohio State University. MR 3322030
- A. J. Wilkie, Model completeness results for expansions of the ordered field of real numbers by restricted Pfaffian functions and the exponential function, J. Amer. Math. Soc. 9 (1996), no. 4, 1051–1094. MR 1398816, DOI 10.1090/S0894-0347-96-00216-0
- Joseph A. Wolf, Growth of finitely generated solvable groups and curvature of Riemannian manifolds, J. Differential Geometry 2 (1968), 421–446. MR 248688
Bibliographic Information
- Philipp Hieronymi
- Affiliation: Department of Mathematics, University of Illinois at Urbana-Champaign, 1409 West Green Street, Urbana, Illinois 61801
- MR Author ID: 894309
- Email: phierony@illinois.edu
- Erik Walsberg
- Affiliation: Department of Mathematics, University of Illinois at Urbana-Champaign, 1409 West Green Street, Urbana, Illinois 61801
- MR Author ID: 1004168
- Email: ewalsber@uci.edu
- Samantha Xu
- Affiliation: School of Social Work, University of Illinois at Urbana-Champaign, 1010 West Nevada Street, Urbana, Illinois 61801
- Email: samxu@illinois.edu
- Received by editor(s): September 6, 2018
- Received by editor(s) in revised form: July 1, 2019, and October 5, 2020
- Published electronically: March 1, 2021
- Additional Notes: The first author was partially supported by NSF grant DMS-1654725. The second author was partially supported by the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC Grant agreement no. 291111/ MODAG
- Communicated by: Heike Mildenberger
- © Copyright 2021 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 149 (2021), 2221-2233
- MSC (2020): Primary 03C64
- DOI: https://doi.org/10.1090/proc/15382
- MathSciNet review: 4232212