Crystallographic multiwavelets in $L^2(\mathbb {R}^d)$
HTML articles powered by AMS MathViewer
- by Ursula Molter and Alejandro Quintero
- Proc. Amer. Math. Soc. 149 (2021), 2445-2460
- DOI: https://doi.org/10.1090/proc/13998
- Published electronically: March 29, 2021
- PDF | Request permission
Abstract:
We characterize the scaling function of a crystal Multiresolution Analysis in terms of the vector-scaling function for a Multiresolution Analysis associated to a lattice. We give necessary and sufficient conditions in terms of the symbol matrix in order that an associated crystal wavelet basis exists.References
- Nikolaos D. Atreas, Manos Papadakis, and Theodoros Stavropoulos, Extension principles for dual multiwavelet frames of $L_2(\Bbb {R}^s)$ constructed from multirefinable generators, J. Fourier Anal. Appl. 22 (2016), no. 4, 854–877. MR 3528402, DOI 10.1007/s00041-015-9441-y
- Ludwig Bieberbach, Über die Bewegungsgruppen der Euklidischen Räume, Math. Ann. 70 (1911), no. 3, 297–336 (German). MR 1511623, DOI 10.1007/BF01564500
- Jeffrey D. Blanchard and Ilya A. Krishtal, Matricial filters and crystallographic composite dilation wavelets, Math. Comp. 81 (2012), no. 278, 905–922. MR 2869042, DOI 10.1090/S0025-5718-2011-02518-4
- Jeffrey D. Blanchard and Kyle R. Steffen, Crystallographic Haar-type composite dilation wavelets, Wavelets and multiscale analysis, Appl. Numer. Harmon. Anal., Birkhäuser/Springer, New York, 2011, pp. 83–108. MR 2789158, DOI 10.1007/978-0-8176-8095-4_{5}
- Carlos A. Cabrelli, Christopher Heil, and Ursula M. Molter, Self-similarity and multiwavelets in higher dimensions, Mem. Amer. Math. Soc. 170 (2004), no. 807, viii+82. MR 2052893, DOI 10.1090/memo/0807
- Carlos A. Cabrelli and María Luisa Gordillo, Existence of multiwavelets in $\Bbb R^n$, Proc. Amer. Math. Soc. 130 (2002), no. 5, 1413–1424. MR 1879965, DOI 10.1090/S0002-9939-01-06223-2
- Ingrid Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math. 41 (1988), no. 7, 909–996. MR 951745, DOI 10.1002/cpa.3160410705
- Zhitao Fan, Hui Ji, and Zuowei Shen, Dual Gramian analysis: duality principle and unitary extension principle, Math. Comp. 85 (2016), no. 297, 239–270. MR 3404449, DOI 10.1090/mcom/2987
- Alfredo L. González and María del Carmen Moure, Crystallographic Haar wavelets, J. Fourier Anal. Appl. 17 (2011), no. 6, 1119–1137. MR 2854832, DOI 10.1007/s00041-011-9175-4
- B. Grünbaum and G.C. Shephard, Tilings and Patterns, Freeman, New York, 1987.
- Karlheinz Gröchenig, Analyse multi-échelles et bases d’ondelettes, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), no. 1, 13–15 (French, with English summary). MR 902279
- Kanghui Guo, Demetrio Labate, Wang-Q Lim, Guido Weiss, and Edward Wilson, Wavelets with composite dilations and their MRA properties, Appl. Comput. Harmon. Anal. 20 (2006), no. 2, 202–236. MR 2207836, DOI 10.1016/j.acha.2005.07.002
- Ilya A. Krishtal, Benjamin D. Robinson, Guido L. Weiss, and Edward N. Wilson, Some simple Haar-type wavelets in higher dimensions, J. Geom. Anal. 17 (2007), no. 1, 87–96. MR 2302875, DOI 10.1007/BF02922084
- Jeffrey C. Lagarias and Yang Wang, Haar bases for $L^2(\textbf {R}^n)$ and algebraic number theory, J. Number Theory 57 (1996), no. 1, 181–197. MR 1378581, DOI 10.1006/jnth.1996.0042
- Joshua MacArthur and Keith F. Taylor, Wavelets with crystal symmetry shifts, J. Fourier Anal. Appl. 17 (2011), no. 6, 1109–1118. MR 2854831, DOI 10.1007/s00041-011-9196-z
- Stephane G. Mallat, Multiresolution approximations and wavelet orthonormal bases of $L^2(\textbf {R})$, Trans. Amer. Math. Soc. 315 (1989), no. 1, 69–87. MR 1008470, DOI 10.1090/S0002-9947-1989-1008470-5
- Yves Meyer, Wavelets and operators, Cambridge Studies in Advanced Mathematics, vol. 37, Cambridge University Press, Cambridge, 1992. Translated from the 1990 French original by D. H. Salinger. MR 1228209
- Judith A. Packer and Marc A. Rieffel, Wavelet filter functions, the matrix completion problem, and projective modules over $C(\Bbb T^n)$, J. Fourier Anal. Appl. 9 (2003), no. 2, 101–116. MR 1964302, DOI 10.1007/s00041-003-0010-4
- Joseph A. Wolf, Spaces of constant curvature, McGraw-Hill Book Co., New York-London-Sydney, 1967. MR 0217740
- Hans Zassenhaus, Beweis eines satzes über diskrete gruppen, Abh. Math. Sem. Univ. Hamburg 12 (1937), no. 1, 289–312 (German). MR 3069692, DOI 10.1007/BF02948950
Bibliographic Information
- Ursula Molter
- Affiliation: Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Capital Federal, Argentina and IMAS, CONICET/UBA, Argentina
- MR Author ID: 126270
- Email: umolter@dm.uba.ar
- Alejandro Quintero
- Affiliation: Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, 7600 Mar del Plata, Argentina
- Email: aquinter@mdp.edu.ar
- Received by editor(s): October 26, 2016
- Published electronically: March 29, 2021
- Additional Notes: This research was partially supported by UBACyT 20020130100403BA and ANPCyT PICT2014-1480
- Communicated by: Alexander Iosevich
- © Copyright 2021 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 149 (2021), 2445-2460
- MSC (2020): Primary 42C40; Secondary 52C22, 20H15
- DOI: https://doi.org/10.1090/proc/13998
- MathSciNet review: 4246796