On superstability in the class of flat modules and perfect rings
HTML articles powered by AMS MathViewer
- by Marcos Mazari-Armida
- Proc. Amer. Math. Soc. 149 (2021), 2639-2654
- DOI: https://doi.org/10.1090/proc/15359
- Published electronically: March 22, 2021
- PDF | Request permission
Abstract:
We obtain a characterization of left perfect rings via superstability of the class of flat left modules with pure embeddings.
\begingroup\itshapeTheorem 0.1. For a ring $R$ the following are equivalent.
-
$R$ is left perfect.
-
The class of flat left $R$-modules with pure embeddings is superstable.
-
There exists a $\lambda \geq (|R| + \aleph _0)^+$ such that the class of flat left $R$-modules with pure embeddings has uniqueness of limit models of cardinality $\lambda$.
-
Every limit model in the class of flat left $R$-modules with pure embeddings is $\Sigma$-cotorsion.
\endgroup
A key step in our argument is the study of limit models in the class of flat modules. We show that limit models with chains of long cofinality are cotorsion and that limit models are elementarily equivalent.
We obtain a new characterization via limit models of the rings characterized in Rothmaler [Comm. Algebra 30 (2002), pp. 3077–3085]. We show that in these rings the equivalence between left perfect rings and superstability can be refined. We show that the results for these rings can be used to extend Shelah result [1.2, Notre Dame J. Form. Log. 58 (2017), pp. 159–177] to classes of flat modules not axiomatizable in first-order logic.
References
- John T. Baldwin, Categoricity, University Lecture Series, vol. 50, American Mathematical Society, Providence, RI, 2009. MR 2532039, DOI 10.1090/ulect/050
- John T. Baldwin and Ralph N. McKenzie, Counting models in universal Horn classes, Algebra Universalis 15 (1982), no. 3, 359–384. MR 689770, DOI 10.1007/BF02483731
- Hyman Bass, Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95 (1960), 466–488. MR 157984, DOI 10.1090/S0002-9947-1960-0157984-8
- L. Bican, R. El Bashir, and E. Enochs, All modules have flat covers, Bull. London Math. Soc. 33 (2001), no. 4, 385–390. MR 1832549, DOI 10.1017/S0024609301008104
- Will Boney, Tameness and extending frames, J. Math. Log. 14 (2014), no. 2, 1450007, 27. MR 3304119, DOI 10.1142/S021906131450007X
- Will Boney and Monica VanDieren, Limit Models in Strictly Stable Abstract Elementary Classes, Preprint. URL: arXiv:1508.04717.
- R. T. Bumby, Modules which are isomorphic to submodules of each other, Arch. Math. (Basel) 16 (1965), 184–185. MR 184973, DOI 10.1007/BF01220018
- Gabriel Sabbagh and Paul Eklof, Definability problems for modules and rings, J. Symbolic Logic 36 (1971), 623–649. MR 313050, DOI 10.2307/2272466
- Edgar E. Enochs, Injective and flat covers, envelopes and resolvents, Israel J. Math. 39 (1981), no. 3, 189–209. MR 636889, DOI 10.1007/BF02760849
- Steven Garavaglia, Decomposition of totally transcendental modules, J. Symbolic Logic 45 (1980), no. 1, 155–164. MR 560233, DOI 10.2307/2273362
- Rami Grossberg, A Course in Model Theory, in Preparation, 201X.
- Rami Grossberg, Classification theory for abstract elementary classes, Logic and algebra, Contemp. Math., vol. 302, Amer. Math. Soc., Providence, RI, 2002, pp. 165–204. MR 1928390, DOI 10.1090/conm/302/05080
- Rami Grossberg and Saharon Shelah, A nonstructure theorem for an infinitary theory which has the unsuperstability property, Illinois J. Math. 30 (1986), no. 2, 364–390. MR 840135
- Rami Grossberg and Monica VanDieren, Galois-stability for tame abstract elementary classes, J. Math. Log. 6 (2006), no. 1, 25–48. MR 2250952, DOI 10.1142/S0219061306000487
- Rami Grossberg, Monica VanDieren, and Andrés Villaveces, Uniqueness of limit models in classes with amalgamation, MLQ Math. Log. Q. 62 (2016), no. 4-5, 367–382. MR 3549555, DOI 10.1002/malq.201500033
- Rami Grossberg and Sebastien Vasey, Equivalent definitions of superstability in tame abstract elementary classes, J. Symb. Log. 82 (2017), no. 4, 1387–1408. MR 3743614, DOI 10.1017/jsl.2017.21
- Pedro A. Guil Asensio and Ivo Herzog, Sigma-cotorsion rings, Adv. Math. 191 (2005), no. 1, 11–28. MR 2102841, DOI 10.1016/j.aim.2004.01.006
- Pedro A. Guil Asensio and Ivo Herzog, Pure-injectivity in the category of flat modules, Algebra and its applications, Contemp. Math., vol. 419, Amer. Math. Soc., Providence, RI, 2006, pp. 155–166. MR 2279115, DOI 10.1090/conm/419/08002
- Pedro A. Guil Asensio and Ivo Herzog, Model-theoretic aspects of $\Sigma$-cotorsion modules, Ann. Pure Appl. Logic 146 (2007), no. 1, 1–12. MR 2311160, DOI 10.1016/j.apal.2006.11.001
- Pedro A. Guil Asensio, Berke Kalebog̃az, and Ashish K. Srivastava, The Schröder-Bernstein problem for modules, J. Algebra 498 (2018), 153–164. MR 3754408, DOI 10.1016/j.jalgebra.2017.11.029
- D. K. Harrison, Infinite abelian groups and homological methods, Ann. of Math. (2) 69 (1959), 366–391. MR 104728, DOI 10.2307/1970188
- Ivo Herzog and Philipp Rothmaler, When cotorsion modules are pure injective, J. Math. Log. 9 (2009), no. 1, 63–102. MR 2665782, DOI 10.1142/S0219061309000835
- Saharon Shelah and Oren Kolman, Categoricity of theories in $L_{\kappa \omega }$, when $\kappa$ is a measurable cardinal. I, Fund. Math. 151 (1996), no. 3, 209–240. MR 1424575
- Thomas G. Kucera and Marcos Mazari-Armida, On universal modules with pure embeddings, Math. Log. Quart. 66 (2020), 395–408, DOI 10.1002/malq.201900058.
- T. Y. Lam, A first course in noncommutative rings, Graduate Texts in Mathematics, vol. 131, Springer-Verlag, New York, 1991. MR 1125071, DOI 10.1007/978-1-4684-0406-7
- Michael Lieberman, Jiří Rosický, and Sebastien Vasey, Forking independence from the categorical point of view, Adv. Math. 346 (2019), 719–772. MR 3914179, DOI 10.1016/j.aim.2019.02.018
- Michael Lieberman, Jiří Rosický, and Sebastien Vasey, Weak factorization systems and stable independence, 45 pages. Preprint. arXiv:1904.05691v2
- Marcos Mazari-Armida, Algebraic description of limit models in classes of abelian groups, Ann. Pure Appl. Logic 171 (2020), no. 1, 102723, 17. MR 4024675, DOI 10.1016/j.apal.2019.102723
- Marcos Mazari-Armida, Superstability, noetherian rings and pure-semisimple rings, Ann. Pure Appl. Logic 172 (2021), no. 3, Paper No. 102917, 24. MR 4172773, DOI 10.1016/j.apal.2020.102917
- Marcos Mazari-Armida, A model theoretic solution to a problem of László Fuchs, J. Algebra 567 (2021), 196–209. MR 4158728, DOI 10.1016/j.jalgebra.2020.09.029
- Marcos Mazari-Armida and Sebastien Vasey, Universal classes near $\aleph _1$, J. Symb. Log. 83 (2018), no. 4, 1633–1643. MR 3893293, DOI 10.1017/jsl.2018.37
- M. Scott Osborne, Basic homological algebra, Graduate Texts in Mathematics, vol. 196, Springer-Verlag, New York, 2000. MR 1757274, DOI 10.1007/978-1-4612-1278-2
- Mike Prest, Model theory and modules, London Mathematical Society Lecture Note Series, vol. 130, Cambridge University Press, Cambridge, 1988. MR 933092, DOI 10.1017/CBO9780511600562
- Philipp Rothmaler, When are pure-injective envelopes of flat modules flat?, Comm. Algebra 30 (2002), no. 6, 3077–3085. MR 1908259, DOI 10.1081/AGB-120004010
- Jan Šaroch and Jan Šťovíček, Singular compactness and definability for $\Sigma$-cotorsion and Gorenstein modules, Selecta Math. (N.S.) 26 (2020), no. 2, Paper No. 23, 40. MR 4076700, DOI 10.1007/s00029-020-0543-2
- S. Shelah, Stable theories, Israel J. Math. 7 (1969), 187–202. MR 253889, DOI 10.1007/BF02787611
- Saharon Shelah, The lazy model-theoretician’s guide to stability, Logique et Anal. (N.S.) 18 (1975), no. 71-72, 241–308. MR 539969
- Saharon Shelah, Classification of nonelementary classes. II. Abstract elementary classes, Classification theory (Chicago, IL, 1985) Lecture Notes in Math., vol. 1292, Springer, Berlin, 1987, pp. 419–497. MR 1033034, DOI 10.1007/BFb0082243
- Saharon Shelah, Universal classes, Classification theory (Chicago, IL, 1985) Lecture Notes in Math., vol. 1292, Springer, Berlin, 1987, pp. 264–418. MR 1033033, DOI 10.1007/BFb0082242
- Saharon Shelah, Categoricity for abstract classes with amalgamation, Ann. Pure Appl. Logic 98 (1999), no. 1-3, 261–294. MR 1696853, DOI 10.1016/S0168-0072(98)00016-5
- Saharon Shelah, Universal structures, Notre Dame J. Form. Log. 58 (2017), no. 2, 159–177. MR 3634974, DOI 10.1215/00294527-3800985
- Saharon Shelah, Classification theory for abstract elementary classes. Vol. 2, Studies in Logic (London), vol. 20, College Publications, London, 2009. Mathematical Logic and Foundations. MR 2649290
- Saharon Shelah and Andrés Villaveces, Toward categoricity for classes with no maximal models, Ann. Pure Appl. Logic 97 (1999), no. 1-3, 1–25. MR 1682066, DOI 10.1016/S0168-0072(98)00015-3
- Bo Stenström, Rings of quotients, Die Grundlehren der mathematischen Wissenschaften, Band 217, Springer-Verlag, New York-Heidelberg, 1975. An introduction to methods of ring theory. MR 0389953
- Monica VanDieren, Categoricity in abstract elementary classes with no maximal models, Ann. Pure Appl. Logic 141 (2006), no. 1-2, 108–147. MR 2229933, DOI 10.1016/j.apal.2005.10.006
- Monica M. VanDieren, Superstability and symmetry, Ann. Pure Appl. Logic 167 (2016), no. 12, 1171–1183. MR 3550319, DOI 10.1016/j.apal.2016.05.004
- Sebastien Vasey, Toward a stability theory of tame abstract elementary classes, J. Math. Log. 18 (2018), no. 2, 1850009, 36. MR 3878471, DOI 10.1142/S0219061318500095
- Sebastien Vasey, The categoricity spectrum of large abstract elementary classes, Selecta Math. (N.S.) 25 (2019), no. 5, Paper No. 65, 51. MR 4021851, DOI 10.1007/s00029-019-0511-x
- Jinzhong Xu, Flat covers of modules, Lecture Notes in Mathematics, vol. 1634, Springer-Verlag, Berlin, 1996. MR 1438789, DOI 10.1007/BFb0094173
- Martin Ziegler, Model theory of modules, Ann. Pure Appl. Logic 26 (1984), no. 2, 149–213. MR 739577, DOI 10.1016/0168-0072(84)90014-9
Bibliographic Information
- Marcos Mazari-Armida
- Affiliation: Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
- MR Author ID: 1301661
- ORCID: 0000-0002-5302-671X
- Email: mmazaria@andrew.cmu.edu
- Received by editor(s): October 25, 2019
- Received by editor(s) in revised form: September 8, 2020, and October 6, 2020
- Published electronically: March 22, 2021
- Communicated by: Heike Mildenberger
- © Copyright 2021 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 149 (2021), 2639-2654
- MSC (2020): Primary 03C48, 16B70; Secondary 03C45, 03C60, 13L05, 16L30, 16D10
- DOI: https://doi.org/10.1090/proc/15359
- MathSciNet review: 4246813