Free minimal actions of solvable Lie groups which are not affable
HTML articles powered by AMS MathViewer
- by Fernando Alcalde Cuesta, Álvaro Lozano Rojo and Matilde Martínez
- Proc. Amer. Math. Soc. 149 (2021), 2679-2691
- DOI: https://doi.org/10.1090/proc/15365
- Published electronically: March 18, 2021
- PDF | Request permission
Abstract:
We construct an uncountable family of transversely Cantor laminations of compact spaces defined by free minimal actions of solvable groups, which are not affable and whose orbits are not quasi-isometric to Cayley graphs.References
- Joseph Auslander, Minimal flows and their extensions, North-Holland Mathematics Studies, vol. 153, North-Holland Publishing Co., Amsterdam, 1988. Notas de Matemática [Mathematical Notes], 122. MR 956049
- Riccardo Benedetti and Jean-Marc Gambaudo, On the dynamics of $\Bbb G$-solenoids. Applications to Delone sets, Ergodic Theory Dynam. Systems 23 (2003), no. 3, 673–691. MR 1992658, DOI 10.1017/S0143385702001578
- Emmanuel Blanc, Laminations minimales résiduellement à 2 bouts, Comment. Math. Helv. 78 (2003), no. 4, 845–864 (French, with English and French summaries). MR 2016699, DOI 10.1007/s00014-003-0778-5
- Sara Brofferio, Maura Salvatori, and Wolfgang Woess, Brownian motion and harmonic functions on $\textrm {Sol}(p,q)$, Int. Math. Res. Not. IMRN 22 (2012), 5182–5218. MR 2997053, DOI 10.1093/imrn/rnr232
- Chris Connell and Matilde Martínez, Harmonic and invariant measures on foliated spaces, Trans. Amer. Math. Soc. 369 (2017), no. 7, 4931–4951. MR 3632555, DOI 10.1090/tran/6811
- Alain Connes, Sur la théorie non commutative de l’intégration, Algèbres d’opérateurs (Sém., Les Plans-sur-Bex, 1978) Lecture Notes in Math., vol. 725, Springer, Berlin, 1979, pp. 19–143 (French). MR 548112
- A. Connes, J. Feldman, and B. Weiss, An amenable equivalence relation is generated by a single transformation, Ergodic Theory Dynam. Systems 1 (1981), no. 4, 431–450 (1982). MR 662736, DOI 10.1017/s014338570000136x
- Alex Eskin and David Fisher, Quasi-isometric rigidity of solvable groups, Proceedings of the International Congress of Mathematicians. Volume III, Hindustan Book Agency, New Delhi, 2010, pp. 1185–1208. MR 2827837
- Alex Eskin, David Fisher, and Kevin Whyte, Quasi-isometries and rigidity of solvable groups, Pure Appl. Math. Q. 3 (2007), no. 4, Special Issue: In honor of Grigory Margulis., 927–947. MR 2402598, DOI 10.4310/PAMQ.2007.v3.n4.a3
- Alex Eskin, David Fisher, and Kevin Whyte, Coarse differentiation of quasi-isometries I: Spaces not quasi-isometric to Cayley graphs, Ann. of Math. (2) 176 (2012), no. 1, 221–260. MR 2925383, DOI 10.4007/annals.2012.176.1.3
- Alex Eskin, David Fisher, and Kevin Whyte, Coarse differentiation of quasi-isometries II: Rigidity for Sol and lamplighter groups, Ann. of Math. (2) 177 (2013), no. 3, 869–910. MR 3034290, DOI 10.4007/annals.2013.177.3.2
- Lucy Garnett, Foliations, the ergodic theorem and Brownian motion, J. Functional Analysis 51 (1983), no. 3, 285–311. MR 703080, DOI 10.1016/0022-1236(83)90015-0
- Étienne Ghys, Topologie des feuilles génériques, Ann. of Math. (2) 141 (1995), no. 2, 387–422 (French). MR 1324140, DOI 10.2307/2118526
- Étienne Ghys, Laminations par surfaces de Riemann, Dynamique et géométrie complexes (Lyon, 1997) Panor. Synthèses, vol. 8, Soc. Math. France, Paris, 1999, pp. ix, xi, 49–95 (French, with English and French summaries). MR 1760843
- Thierry Giordano, Hiroki Matui, Ian F. Putnam, and Christian F. Skau, Orbit equivalence for Cantor minimal $\Bbb Z^d$-systems, Invent. Math. 179 (2010), no. 1, 119–158. MR 2563761, DOI 10.1007/s00222-009-0213-7
- Thierry Giordano, Ian Putnam, and Christian Skau, Affable equivalence relations and orbit structure of Cantor dynamical systems, Ergodic Theory Dynam. Systems 24 (2004), no. 2, 441–475. MR 2054051, DOI 10.1017/S014338570300066X
- Gilbert Hector, Personal communication, 2016.
- Johannes Kellendonk and Ian F. Putnam, Tilings, $C^*$-algebras, and $K$-theory, Directions in mathematical quasicrystals, CRM Monogr. Ser., vol. 13, Amer. Math. Soc., Providence, RI, 2000, pp. 177–206. MR 1798993
- G. A. Margulis and S. Mozes, Aperiodic tilings of the hyperbolic plane by convex polygons, Israel J. Math. 107 (1998), 319–325. MR 1658579, DOI 10.1007/BF02764015
- John C. Oxtoby, Ergodic sets, Bull. Amer. Math. Soc. 58 (1952), 116–136. MR 47262, DOI 10.1090/S0002-9904-1952-09580-X
- R. Penrose, Pentaplexity: a class of nonperiodic tilings of the plane, Math. Intelligencer 2 (1979/80), no. 1, 32–37. MR 558670, DOI 10.1007/BF03024384
- Samuel Petite, On invariant measures of finite affine type tilings, Ergodic Theory Dynam. Systems 26 (2006), no. 4, 1159–1176. MR 2247636, DOI 10.1017/S0143385706000137
- Jean Renault, A groupoid approach to $C^{\ast }$-algebras, Lecture Notes in Mathematics, vol. 793, Springer, Berlin, 1980. MR 584266
- Jean Renault, AF equivalence relations and their cocycles, Operator algebras and mathematical physics (Constanţa, 2001) Theta, Bucharest, 2003, pp. 365–377. MR 2018241
Bibliographic Information
- Fernando Alcalde Cuesta
- Affiliation: Instituto de Matemáticas, Universidad de Santiago de Compostela, E-15782, Santiago de Compostela, Spain
- MR Author ID: 24510
- ORCID: 0000-0002-6863-4283
- Email: fernando.alcalde@usc.es
- Álvaro Lozano Rojo
- Affiliation: Centro Universitario de la Defensa, Academia General Militar, Ctra. Huesca s/n. E-50090 Zaragoza, Spain
- ORCID: 0000-0002-1184-5901
- Email: alozano@unizar.es
- Matilde Martínez
- Affiliation: Instituto de Matemática y Estadística Rafael Laguardia, Facultad de Ingeniería, Universidad de la República, J.Herrera y Reissig 565, C.P.11300 Montevideo, Uruguay
- ORCID: 0000-0002-4926-6892
- Email: matildem@fing.edu.uy
- Received by editor(s): December 5, 2019
- Received by editor(s) in revised form: September 15, 2020
- Published electronically: March 18, 2021
- Additional Notes: This work was partially supported by Spanish MINECO Grant MTM2016-77642-C2-2-P), the European Regional Development Fund, and grant ANII-FCE-135352 from Uruguay.
The research of the first author has been carried out despite the current administration of the University of Santiago de Compostela. - Communicated by: Nimish Shah
- © Copyright 2021 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 149 (2021), 2679-2691
- MSC (2020): Primary 57R30; Secondary 37A20, 37B52
- DOI: https://doi.org/10.1090/proc/15365
- MathSciNet review: 4246817
Dedicated: Dedicated to Jean Renault on his $70$th birthday