Residual finiteness for central pushouts
HTML articles powered by AMS MathViewer
- by Alexandru Chirvasitu
- Proc. Amer. Math. Soc. 149 (2021), 2551-2559
- DOI: https://doi.org/10.1090/proc/15368
- Published electronically: March 23, 2021
- PDF | Request permission
Abstract:
We prove that pushouts $A*_CB$ of residually finite-dimensional (RFD) $C^*$-algebras over central subalgebras are always residually finite-dimensional provided the fibers $A_p$ and $B_p$, $p\in \mathrm {spec}~C$ are RFD, recovering and generalizing results by Korchagin and Courtney-Shulman. This then allows us to prove that certain central pushouts of amenable groups have RFD group $C^*$-algebras. Along the way, we discuss the problem of when, given a central group embedding $H\le G$, the resulting $C^*$-algebra morphism is a continuous field: this is always the case for amenable $G$ but not in general.References
- Herbert Abels, An example of a finitely presented solvable group, Homological group theory (Proc. Sympos., Durham, 1977) London Math. Soc. Lecture Note Ser., vol. 36, Cambridge Univ. Press, Cambridge-New York, 1979, pp. 205–211. MR 564423
- R. J. Archbold, On residually finite-dimensional $C^*$-algebras, Proc. Amer. Math. Soc. 123 (1995), no. 9, 2935–2937. MR 1301006, DOI 10.1090/S0002-9939-1995-1301006-9
- Scott Armstrong, Ken Dykema, Ruy Exel, and Hanfeng Li, On embeddings of full amalgamated free product $C^*$-algebras, Proc. Amer. Math. Soc. 132 (2004), no. 7, 2019–2030. MR 2053974, DOI 10.1090/S0002-9939-04-07370-8
- Benjamin Baumslag and Marvin Tretkoff, Residually finite HNN extensions, Comm. Algebra 6 (1978), no. 2, 179–194. MR 484178, DOI 10.1080/00927877808822240
- Gilbert Baumslag, On the residual finiteness of generalised free products of nilpotent groups, Trans. Amer. Math. Soc. 106 (1963), 193–209. MR 144949, DOI 10.1090/S0002-9947-1963-0144949-8
- Gilbert Baumslag, Finitely generated cyclic extensions of free groups are residually finite, Bull. Austral. Math. Soc. 5 (1971), 87–94. MR 311776, DOI 10.1017/S0004972700046906
- Bachir Bekka, Pierre de la Harpe, and Alain Valette, Kazhdan’s property (T), New Mathematical Monographs, vol. 11, Cambridge University Press, Cambridge, 2008. MR 2415834, DOI 10.1017/CBO9780511542749
- Mohammed E. B. Bekka, Amenable unitary representations of locally compact groups, Invent. Math. 100 (1990), no. 2, 383–401. MR 1047140, DOI 10.1007/BF01231192
- Étienne Blanchard, Déformations de $C^*$-algèbres de Hopf, Bull. Soc. Math. France 124 (1996), no. 1, 141–215 (French, with English and French summaries). MR 1395009
- Etienne Blanchard, Amalgamated free products of $C^\ast$-bundles, Proc. Edinb. Math. Soc. (2) 52 (2009), no. 1, 23–36. MR 2475878, DOI 10.1017/S0013091506001556
- Nathanial P. Brown and Kenneth J. Dykema, Popa algebras in free group factors, J. Reine Angew. Math. 573 (2004), 157–180. MR 2084586, DOI 10.1515/crll.2004.058
- Robert Campbell. http://www.math.umbc.edu/~campbell/CombGpThy/RF_Thesis/2_RF_Results.html. Accessed: 2020-01-21.
- Tullio Ceccherini-Silberstein and Michel Coornaert, Cellular automata and groups, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010. MR 2683112, DOI 10.1007/978-3-642-14034-1
- Kristin Courtney and Tatiana Shulman, Free products with amalgamation over central $\rm {C}^*$-subalgebras, Proc. Amer. Math. Soc. 148 (2020), no. 2, 765–776. MR 4052213, DOI 10.1090/proc/14746
- Ruy Exel and Terry A. Loring, Finite-dimensional representations of free product $C^*$-algebras, Internat. J. Math. 3 (1992), no. 4, 469–476. MR 1168356, DOI 10.1142/S0129167X92000217
- J. M. G. Fell, Weak containment and induced representations of groups, Canadian J. Math. 14 (1962), 237–268. MR 150241, DOI 10.4153/CJM-1962-016-6
- Uffe Haagerup, Søren Knudby, and Tim de Laat, A complete characterization of connected Lie groups with the approximation property, Ann. Sci. Éc. Norm. Supér. (4) 49 (2016), no. 4, 927–946 (English, with English and French summaries). MR 3552017, DOI 10.24033/asens.2299
- Don Hadwin, A lifting characterization of RFD $\rm C^*$-algebras, Math. Scand. 115 (2014), no. 1, 85–95. MR 3250050, DOI 10.7146/math.scand.a-18004
- G. G. Kasparov, Equivariant $KK$-theory and the Novikov conjecture, Invent. Math. 91 (1988), no. 1, 147–201. MR 918241, DOI 10.1007/BF01404917
- Anton Korchagin, Amalgamated free products of commutative $C^*$-algebras are residually finite-dimensional, J. Operator Theory 71 (2014), no. 2, 507–515. MR 3214649, DOI 10.7900/jot.2012jul03.1986
- Qihui Li and Junhao Shen, A note on unital full amalgamated free products of RFD $C^\ast$-algebras, Illinois J. Math. 56 (2012), no. 2, 647–659. MR 3161345
- Wilhelm Magnus, Abraham Karrass, and Donald Solitar, Combinatorial group theory, 2nd ed., Dover Publications, Inc., Mineola, NY, 2004. Presentations of groups in terms of generators and relations. MR 2109550
- Marc A. Rieffel, Continuous fields of $C^*$-algebras coming from group cocycles and actions, Math. Ann. 283 (1989), no. 4, 631–643. MR 990592, DOI 10.1007/BF01442857
- Derek J. S. Robinson, A course in the theory of groups, 2nd ed., Graduate Texts in Mathematics, vol. 80, Springer-Verlag, New York, 1996. MR 1357169, DOI 10.1007/978-1-4419-8594-1
- Tatiana Shulman. Central amalgamation of groups and the RFD property, 2019. arXiv:2001.00052.
Bibliographic Information
- Alexandru Chirvasitu
- Affiliation: Department of Mathematics, University of Buffalo, Buffalo, New York 14260-2900
- MR Author ID: 868724
- Email: achirvas@buffalo.edu
- Received by editor(s): April 28, 2020
- Received by editor(s) in revised form: September 7, 2020, and September 29, 2020
- Published electronically: March 23, 2021
- Additional Notes: This work was partially supported by NSF grants DMS-1801011 and DMS-2001128
- Communicated by: Adrian Ioana
- © Copyright 2021 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 149 (2021), 2551-2559
- MSC (2020): Primary 46L09, 20E26, 22D10, 18A30
- DOI: https://doi.org/10.1090/proc/15368
- MathSciNet review: 4246805