Geometric Newton inequalities
HTML articles powered by AMS MathViewer
- by James M. Ni PDF
- Proc. Amer. Math. Soc. 149 (2021), 2609-2623 Request permission
Abstract:
In this article, we take a geometric approach to extend Newton’s well-known inequalities. A family of inequalities, which are invariant under affine transformations, is proposed for parallelotopes. We prove some of them and show the connections they have with matrix inequalities, convex geometry, and geometric inequalities.References
- Emil Artin, The gamma function, Athena Series: Selected Topics in Mathematics, Holt, Rinehart and Winston, New York-Toronto-London, 1964. Translated by Michael Butler. MR 0165148
- Yu. D. Burago and V. A. Zalgaller, Geometric inequalities, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 285, Springer-Verlag, Berlin, 1988. Translated from the Russian by A. B. Sosinskiĭ; Springer Series in Soviet Mathematics. MR 936419, DOI 10.1007/978-3-662-07441-1
- Ky Fan, Subadditive functions on a distributive lattice and an extension of Szász’s inequality, J. Math. Anal. Appl. 18 (1967), 262–268. MR 210729, DOI 10.1016/0022-247X(67)90056-X
- J. Favard, Sur les corps convexes. J. Math. Pures Appl., 12 (1933), 219–282.
- F. R. Gantmacher and M. G. Kreĭn, Oszillationsmatrizen, Oszillationskerne und kleine Schwingungen mechanischer Systeme, Mathematische Lehrbücher und Monographien, I. Abteilung, Bd. V, Akademie-Verlag, Berlin, 1960 (German). Wissenschaftliche Bearbeitung der deutschen Ausgabe: Alfred Stöhr. MR 0114338
- P. M. Gruber and J. M. Wills (eds.), Handbook of convex geometry. Vol. A, B, North-Holland Publishing Co., Amsterdam, 1993. MR 1242973
- H. Hadwiger, Vorlesungen über Inhalt, Oberfläche und Isoperimetrie, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1957 (German). MR 0102775
- G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1988. Reprint of the 1952 edition. MR 944909
- D. M. Koteljanskiĭ, The theory of nonnegative and oscillating matrices, Amer. Math. Soc. Transl. (2) 27 (1963), 1–8. MR 0151465, DOI 10.1090/trans2/027/01
- L. H. Loomis and H. Whitney, An inequality related to the isoperimetric inequality, Bull. Amer. Math. Soc 55 (1949), 961–962. MR 0031538, DOI 10.1090/S0002-9904-1949-09320-5
- Marvin Marcus and Henryk Minc, A survey of matrix theory and matrix inequalities, Dover Publications, Inc., New York, 1992. Reprint of the 1969 edition. MR 1215484
- D. S. Mitrinović, Analytic inequalities, Die Grundlehren der mathematischen Wissenschaften, Band 165, Springer-Verlag, New York-Berlin, 1970. In cooperation with P. M. Vasić. MR 0274686
- Rolf Schneider, Convex bodies: the Brunn-Minkowski theory, Second expanded edition, Encyclopedia of Mathematics and its Applications, vol. 151, Cambridge University Press, Cambridge, 2014. MR 3155183
- Igor R. Shafarevich and Alexey O. Remizov, Linear algebra and geometry, Springer, Heidelberg, 2013. Translated from the 2009 Russian original by David Kramer and Lena Nekludova. MR 2963561, DOI 10.1007/978-3-642-30994-6
Additional Information
- James M. Ni
- Affiliation: Westview High School, 13500 Camino Del Sur, San Diego, California 92129
- ORCID: 0000-0002-6646-3564
- Email: liamgotelgoog@gmail.com
- Received by editor(s): August 3, 2020
- Received by editor(s) in revised form: August 10, 2020, and September 2, 2020
- Published electronically: March 25, 2021
- Communicated by: Jia-Ping Wang
- © Copyright 2021 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 149 (2021), 2609-2623
- MSC (2020): Primary 53A15, 52A39, 52B60
- DOI: https://doi.org/10.1090/proc/15372
- MathSciNet review: 4246811