On the homology of the commutator subgroup of the pure braid group
HTML articles powered by AMS MathViewer
- by Andrea Bianchi
- Proc. Amer. Math. Soc. 149 (2021), 2387-2401
- DOI: https://doi.org/10.1090/proc/15404
- Published electronically: March 29, 2021
- PDF | Request permission
Abstract:
We study the homology of $[P_{n},P_{n}]$, the commutator subgroup of the pure braid group on $n$ strands, and show that $H_l([P_{n},P_{n}])$ contains a free abelian group of infinite rank for all $1\leq l\leq n-2$. As a consequence we determine the cohomological dimension of $[P_{n},P_{n}]$: for $n\geq 2$ we have $\mathrm {cd}([P_{n},P_{n}])=n-2$.References
- V. I. Arnol′d, The cohomology ring of the group of dyed braids, Mat. Zametki 5 (1969), 227–231 (Russian). MR 242196
- Emil Artin, Theorie der Zöpfe, Abh. Math. Sem. Univ. Hamburg 4 (1925), no. 1, 47–72 (German). MR 3069440, DOI 10.1007/BF02950718
- Andrea Bianchi and David Recio-Mitter, Topological complexity of unordered configuration spaces of surfaces, Algebr. Geom. Topol. 19 (2019), no. 3, 1359–1384. MR 3954285, DOI 10.2140/agt.2019.19.1359
- Filippo Callegaro, The homology of the Milnor fiber for classical braid groups, Algebr. Geom. Topol. 6 (2006), 1903–1923. MR 2263054, DOI 10.2140/agt.2006.6.1903
- Filippo Callegaro, Davide Moroni, and Mario Salvetti, Cohomology of affine Artin groups and applications, Trans. Amer. Math. Soc. 360 (2008), no. 8, 4169–4188. MR 2395168, DOI 10.1090/S0002-9947-08-04488-7
- C. De Concini, C. Procesi, and M. Salvetti, Arithmetic properties of the cohomology of braid groups, Topology 40 (2001), no. 4, 739–751. MR 1851561, DOI 10.1016/S0040-9383(99)00081-6
- Corrado De Concini, Claudio Procesi, Mario Salvetti, and Fabio Stumbo, Arithmetic properties of the cohomology of Artin groups, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28 (1999), no. 4, 695–717. MR 1760537
- Graham Denham, The Orlik-Solomon complex and Milnor fibre homology, Topology Appl. 118 (2002), no. 1-2, 45–63. Arrangements in Boston: a Conference on Hyperplane Arrangements (1999). MR 1877715, DOI 10.1016/S0166-8641(01)00041-4
- D. Djawadi, Minimal CW-complexes for complements of reflection arrangements of type A$_n$ and B$_n$, PhD thesis, University of Marburg, 2009. https://archiv.ub.uni-marburg.de/diss/z2009/0111/pdf/ddd.pdf.
- Edward Fadell and Lee Neuwirth, Configuration spaces, Math. Scand. 10 (1962), 111–118. MR 141126, DOI 10.7146/math.scand.a-10517
- Robin Forman, Morse theory for cell complexes, Adv. Math. 134 (1998), no. 1, 90–145. MR 1612391, DOI 10.1006/aima.1997.1650
- È. V. Frenkel′, Cohomology of the commutator subgroup of the braid group, Funktsional. Anal. i Prilozhen. 22 (1988), no. 3, 91–92 (Russian); English transl., Funct. Anal. Appl. 22 (1988), no. 3, 248–250 (1989). MR 961774, DOI 10.1007/BF01077640
- D. B. Fuks, Cohomology of the braid group $\textrm {mod}\ 2$, Funkcional. Anal. i Priložen. 4 (1970), no. 2, 62–73 (Russian). MR 0274463
- Kevin P. Knudson, Morse theory, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2015. Smooth and discrete. MR 3379451, DOI 10.1142/9360
- Dmitry Kozlov, Combinatorial algebraic topology, Algorithms and Computation in Mathematics, vol. 21, Springer, Berlin, 2008. MR 2361455, DOI 10.1007/978-3-540-71962-5
- D. Lofano, Hyperplane arrangement and discrete Morse theory, Master’s thesis, University of Pisa, 2018. https://etd.adm.unipi.it/theses/available/etd-06182018-115200/.
- N. S. Markaryan, Homology of braid groups with nontrivial coefficients, Mat. Zametki 59 (1996), no. 6, 846–854, 960 (Russian, with Russian summary); English transl., Math. Notes 59 (1996), no. 5-6, 611–617. MR 1445470, DOI 10.1007/BF02307210
- M. Salvetti, Topology of the complement of real hyperplanes in $\textbf {C}^N$, Invent. Math. 88 (1987), no. 3, 603–618. MR 884802, DOI 10.1007/BF01391833
- Simona Settepanella, Cohomology of pure braid groups of exceptional cases, Topology Appl. 156 (2009), no. 5, 1008–1012. MR 2498934, DOI 10.1016/j.topol.2008.12.007
Bibliographic Information
- Andrea Bianchi
- Affiliation: Mathematics Institute, University of Bonn, Endenicher Allee 60, Bonn, Germany
- Address at time of publication: Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, Copenhagen, Denmark
- MR Author ID: 1324567
- Email: anbi@math.ku.dk
- Received by editor(s): March 17, 2020
- Received by editor(s) in revised form: October 19, 2020
- Published electronically: March 29, 2021
- Additional Notes: This work was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy (EXC-2047/1, 390685813)
- Communicated by: Julie Bergner
- © Copyright 2021 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 149 (2021), 2387-2401
- MSC (2020): Primary 20F36, 55R20, 55R35, 55R80, 16S34, 20C07
- DOI: https://doi.org/10.1090/proc/15404
- MathSciNet review: 4246792