On the Northcott property and local degrees
Authors:
S. Checcoli and A. Fehm
Journal:
Proc. Amer. Math. Soc. 149 (2021), 2403-2414
MSC (2020):
Primary 11G50, 12E30, 11R04, 12F05
DOI:
https://doi.org/10.1090/proc/15411
Published electronically:
March 26, 2021
MathSciNet review:
4246793
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: We construct infinite Galois extensions $L$ of $\mathbb {Q}$ that satisfy the Northcott property on elements of small height, and where this property can be deduced solely from the local behavior of $L$ at the different prime numbers. We also give examples of Galois extensions of $\mathbb {Q}$ which have finite local degree at all prime numbers and do not satisfy the Northcott property.
- Francesco Amoroso and Roberto Dvornicich, A lower bound for the height in abelian extensions, J. Number Theory 80 (2000), no. 2, 260–272. MR 1740514, DOI https://doi.org/10.1006/jnth.1999.2451
- Francesco Amoroso, Sinnou David, and Umberto Zannier, On fields with Property (B), Proc. Amer. Math. Soc. 142 (2014), no. 6, 1893–1910. MR 3182009, DOI https://doi.org/10.1090/S0002-9939-2014-11925-3
- Francesco Amoroso and Umberto Zannier, A relative Dobrowolski lower bound over abelian extensions, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 29 (2000), no. 3, 711–727. MR 1817715
- Francesco Amoroso and Umberto Zannier, A uniform relative Dobrowolski’s lower bound over abelian extensions, Bull. Lond. Math. Soc. 42 (2010), no. 3, 489–498. MR 2651944, DOI https://doi.org/10.1112/blms/bdq008
- Enrico Bombieri and Umberto Zannier, A note on heights in certain infinite extensions of $\Bbb Q$, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 12 (2001), 5–14 (2002) (English, with English and Italian summaries). MR 1898444
- Sara Checcoli, A note on Galois groups and local degrees, Manuscripta Math. 159 (2019), no. 1-2, 1–12. MR 3936131, DOI https://doi.org/10.1007/s00229-018-1039-7
- Sara Checcoli and Martin Widmer, On the Northcott property and other properties related to polynomial mappings, Math. Proc. Cambridge Philos. Soc. 155 (2013), no. 1, 1–12. MR 3065255, DOI https://doi.org/10.1017/S0305004113000042
- Pierre Dèbes and Nour Ghazi, Galois covers and the Hilbert-Grunwald property, Ann. Inst. Fourier (Grenoble) 62 (2012), no. 3, 989–1013 (English, with English and French summaries). MR 3013814, DOI https://doi.org/10.5802/aif.2714
- V. Dimitrov, A proof of the Schinzel-Zassenhaus conjecture on polynomials, arXiv:1912.12545 [math.NT] (2019).
- Roberto Dvornicich and Umberto Zannier, On the properties of Northcott and of Narkiewicz for fields of algebraic numbers. part 1, Funct. Approx. Comment. Math. 39 (2008), no. part 1, 163–173. MR 2490096, DOI https://doi.org/10.7169/facm/1229696562
- Arno Fehm, Three counterexamples concerning the Northcott property of fields, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 29 (2018), no. 2, 309–314. MR 3797986, DOI https://doi.org/10.4171/RLM/807
- Paul Fili, On the heights of totally $p$-adic numbers, J. Théor. Nombres Bordeaux 26 (2014), no. 1, 103–109 (English, with English and French summaries). MR 3232769
- L. Frey, Explicit Small Heights in Infinite Non-Abelian Extensions, arXiv:1712.04214 [math.NT] (2017).
- Aurélien Galateau, Small height in fields generated by singular moduli, Proc. Amer. Math. Soc. 144 (2016), no. 7, 2771–2786. MR 3487213, DOI https://doi.org/10.1090/S0002-9939-2016-13058-X
- P. Habegger, Small height and infinite nonabelian extensions, Duke Math. J. 162 (2013), no. 11, 2027–2076. MR 3090783, DOI https://doi.org/10.1215/00127094-2331342
- Henryk Iwaniec and Emmanuel Kowalski, Analytic number theory, American Mathematical Society Colloquium Publications, vol. 53, American Mathematical Society, Providence, RI, 2004. MR 2061214
- Jürgen Klüners and Gunter Malle, Counting nilpotent Galois extensions, J. Reine Angew. Math. 572 (2004), 1–26. MR 2076117, DOI https://doi.org/10.1515/crll.2004.050
- Władysław Narkiewicz, Elementary and analytic theory of algebraic numbers, 3rd ed., Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2004. MR 2078267
- Jürgen Neukirch, On solvable number fields, Invent. Math. 53 (1979), no. 2, 135–164. MR 560411, DOI https://doi.org/10.1007/BF01390030
- Jürgen Neukirch, Algebraic number theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 322, Springer-Verlag, Berlin, 1999. Translated from the 1992 German original and with a note by Norbert Schappacher; With a foreword by G. Harder. MR 1697859
- J. Neukirch, A. Schmidt, and K. Wingberg, Cohomology of number fields (Second Edition), Springer (2008).
- Arnaud Plessis, Minoration de la hauteur de Weil dans un compositum de corps de rayon, J. Number Theory 205 (2019), 246–276 (French, with English and French summaries). MR 3996352, DOI https://doi.org/10.1016/j.jnt.2019.05.008
- Lukas Pottmeyer, Heights and totally $p$-adic numbers, Acta Arith. 171 (2015), no. 3, 277–291. MR 3416948, DOI https://doi.org/10.4064/aa171-3-5
- Lukas Pottmeyer, A note on extensions of $\Bbb Q^{tr}$, J. Théor. Nombres Bordeaux 28 (2016), no. 3, 735–742 (English, with English and French summaries). MR 3610695
- A. Schinzel, On the product of the conjugates outside the unit circle of an algebraic number, Acta Arith. 24 (1973), 385–399. MR 360515, DOI https://doi.org/10.4064/aa-24-4-385-399
- Alexandra Shlapentokh, First-order decidability and definability of integers in infinite algebraic extensions of the rational numbers, Israel J. Math. 226 (2018), no. 2, 579–633. MR 3819703, DOI https://doi.org/10.1007/s11856-018-1708-y
- Xavier Vidaux and Carlos R. Videla, A note on the Northcott property and undecidability, Bull. Lond. Math. Soc. 48 (2016), no. 1, 58–62. MR 3455748, DOI https://doi.org/10.1112/blms/bdv089
- Carlos R. Videla, Definability of the ring of integers in pro-$p$ Galois extensions of number fields, Israel J. Math. 118 (2000), 1–14. MR 1776073, DOI https://doi.org/10.1007/BF02803513
- Arnold Walfisz, Zur additiven Zahlentheorie. II, Math. Z. 40 (1936), no. 1, 592–607 (German). MR 1545584, DOI https://doi.org/10.1007/BF01218882
- Martin Widmer, On certain infinite extensions of the rationals with Northcott property, Monatsh. Math. 162 (2011), no. 3, 341–353. MR 2775852, DOI https://doi.org/10.1007/s00605-009-0162-7
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2020): 11G50, 12E30, 11R04, 12F05
Retrieve articles in all journals with MSC (2020): 11G50, 12E30, 11R04, 12F05
Additional Information
S. Checcoli
Affiliation:
Institut Fourier, Université Grenoble Alpes, 100 rue des Mathématiques, 38610 Gières, France
MR Author ID:
924817
Email:
sara.checcoli@univ-grenoble-alpes.fr
A. Fehm
Affiliation:
Institut für Algebra, Fakultät Mathematik, Technische Universität Dresden, 01062 Dresden, Germany
MR Author ID:
887431
ORCID:
0000-0002-2170-9110
Email:
arno.fehm@tu-dresden.de
Received by editor(s):
June 9, 2020
Received by editor(s) in revised form:
September 30, 2020, and October 26, 2020
Published electronically:
March 26, 2021
Additional Notes:
The first author’s work was funded by the ANR project Gardio 14-CE25-0015
The second author was funded by the Deutsche Forschungsgemeinschaft (DFG) - 404427454
Communicated by:
Romyar T. Sharifi
Article copyright:
© Copyright 2021
American Mathematical Society