If not distinguished, is $C_{p}\left ( X\right )$ even close?
HTML articles powered by AMS MathViewer
- by J. C. Ferrando and Stephen A. Saxon
- Proc. Amer. Math. Soc. 149 (2021), 2583-2596
- DOI: https://doi.org/10.1090/proc/15439
- Published electronically: March 25, 2021
- PDF | Request permission
Abstract:
$C_{p}\left ( X\right )$ is distinguished $\Leftrightarrow$ the strong dual $L_{\beta }\left ( X\right )$ is barrelled $\Leftrightarrow$ the strong bidual $M\left ( X\right ) =\mathbb {R}^{X}$. So one may judge how nearly distinguished $C_{p}\left ( X\right )$ is by how nearly barrelled $L_{\beta }\left ( X\right )$ is, and also by how near the dense subspace $M\left ( X\right )$ is to the Baire space $\mathbb {R}^{X}$. Being Baire-like, $M\left ( X\right )$ is always fairly close to $\mathbb {R}^{X}$ in that sense. But if $C_{p}\left ( X\right )$ is not distinguished, we show the codimension of $M\left ( X\right )$ is uncountable, i.e., $M\left ( X\right )$ is algebraically far from $\mathbb {R}^{X}$, and moreover, $L_{\beta }\left ( X\right )$ is very far from barrelled, not even primitive. Thus we profile weak barrelledness for $L_{\beta }\left ( X\right )$ and $M\left ( X\right )$ spaces. At the same time, we characterize those Tychonoff spaces $X$ for which $C_{p}\left ( X\right )$ is distinguished, solving the original problem from our series of papers.References
- Ichiro Amemiya and Yukio K\B{o}mura, Über nicht-vollständige Montelräume, Math. Ann. 177 (1968), 273–277 (German). MR 232182, DOI 10.1007/BF01350719
- T. Banakh and S. Gabriyelyan, Locally convex properties of Baire type function spaces, J. Convex Anal., 28(3) (2021).
- Henri Buchwalter and Jean Schmets, Sur quelques propriétés de l’espace $C_{s}$ $(T)$, J. Math. Pures Appl. (9) 52 (1973), 337–352 (French). MR 333687
- B. Cascales, J. Ka̧kol, and S. A. Saxon, Metrizability vs. Fréchet-Urysohn property, Proc. Amer. Math. Soc. 131 (2003), no. 11, 3623–3631. MR 1991777, DOI 10.1090/S0002-9939-03-06944-2
- M. De Wilde, Quelques théorèmes d’extension de fonctionnelles linéaires, Bull. Soc. Roy. Sci. Liège 35 (1966), 552–557 (French, with English summary). MR 216266
- Juan Carlos Ferrando, Saak Gabriyelyan, and Jerzy Ka̧kol, Bounded sets structure of $C_p(X)$ and quasi-$(DF)$-spaces, Math. Nachr. 292 (2019), no. 12, 2602–2618. MR 4056439, DOI 10.1002/mana.201800085
- Juan Carlos Ferrando and Jerzy Kąkol, Metrizable bounded sets in $C(X)$ spaces and distinguished $C_p(X)$ spaces, J. Convex Anal. 26 (2019), no. 4, 1337–1346. MR 4028412
- J. C. Ferrando, J. Ka̧kol, A. Leiderman, and S. A. Saxon, Distinguished $C_p(X)$ spaces, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 115 (2021), no. 1, Paper No. 27, 18. MR 4182104, DOI 10.1007/s13398-020-00967-4
- J. C. Ferrando, J. Kąkol, M. López Pellicer, and S. A. Saxon, Tightness and distinguished Fréchet spaces, J. Math. Anal. Appl. 324 (2006), no. 2, 862–881. MR 2265087, DOI 10.1016/j.jmaa.2005.12.059
- J. C. Ferrando, Jerzy Kąkol, and Stephen A. Saxon, The dual of the locally convex space $C_p(X)$, Funct. Approx. Comment. Math. 50 (2014), no. 2, 389–399. MR 3229067, DOI 10.7169/facm/2014.50.2.11
- J. C. Ferrando, Jerzy Ka̧kol, and Stephen A. Saxon, Characterizing P-spaces $X$ in terms of $C_p(X)$, J. Convex Anal. 22 (2015), no. 4, 905–915. MR 3436693
- Juan Carlos Ferrando, Jerzy Kąkol, and Stephen A. Saxon, Examples of nondistinguished function spaces $C_p(X)$, J. Convex Anal. 26 (2019), no. 4, 1347–1348. MR 4028413
- J. C. Ferrando, M. López Pellicer, and L. M. Sánchez Ruiz, Metrizable barrelled spaces, Pitman Research Notes in Mathematics Series, vol. 332, Longman, Harlow, 1995. MR 1379112
- J. C. Ferrando and L. M. Sánchez Ruiz, On sequential barrelledness, Arch. Math. (Basel) 57 (1991), no. 6, 597–605. MR 1135415, DOI 10.1007/BF01199065
- Ferrando, J. C. and Saxon, S. A., Distinguished $C_{p}\left ( X\right )$ spaces and the strongest locally convex topology, preprint.
- S. Gabriyelyan, Locally convex properties of free locally convex spaces, J. Math. Anal. Appl. 480 (2019), no. 2, 123453, 16. MR 4000111, DOI 10.1016/j.jmaa.2019.123453
- Leonard Gillman and Meyer Jerison, Rings of continuous functions, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0116199
- Taqdir Husain, Two new classes of locally convex spaces, Math. Ann. 166 (1966), 289–299. MR 212535, DOI 10.1007/BF01360784
- Hans Jarchow, Locally convex spaces, Mathematische Leitfäden. [Mathematical Textbooks], B. G. Teubner, Stuttgart, 1981. MR 632257
- Jerzy Kąkol, Wiesław Kubiś, and Manuel López-Pellicer, Descriptive topology in selected topics of functional analysis, Developments in Mathematics, vol. 24, Springer, New York, 2011. MR 2953769, DOI 10.1007/978-1-4614-0529-0
- Jerzy Ka̧kol and Arkady Leiderman, A characterization of $X$ for which spaces $C_p(X)$ are distinguished and its applications, Proc. Amer. Math. Soc. Ser. B 8 (2021), 86–99. MR 4214339, DOI 10.1090/bproc/76
- Jerzy Ka̧kol and Stephen A. Saxon, Separable quotients in $C_c(X)$, $C_p(X)$, and their duals, Proc. Amer. Math. Soc. 145 (2017), no. 9, 3829–3841. MR 3665036, DOI 10.1090/proc/13360
- Jerzy Ka̧kol and Stephen A. Saxon, Separable quotients for less-than-barrelled function spaces, J. Math. Anal. Appl. 459 (2018), no. 2, 1102–1105. MR 3732574, DOI 10.1016/j.jmaa.2017.11.034
- Jerzy Kąkol and Stephen A. Saxon, The quotient/codimension problems, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113 (2019), no. 2, 1429–1443. MR 3942406, DOI 10.1007/s13398-018-0556-2
- Jerzy Kąkol, Stephen A. Saxon, and Aaron R. Todd, Weak barrelledness for $C(X)$ spaces, J. Math. Anal. Appl. 297 (2004), no. 2, 495–505. Special issue dedicated to John Horváth. MR 2088675, DOI 10.1016/j.jmaa.2004.03.015
- Jerzy Kąkol, Stephen A. Saxon, and Aaron R. Todd, Barrelled spaces with(out) separable quotients, Bull. Aust. Math. Soc. 90 (2014), no. 2, 295–303. MR 3252012, DOI 10.1017/S0004972714000422
- Gottfried Köthe, Topological vector spaces. II, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 237, Springer-Verlag, New York-Berlin, 1979. MR 551623
- Pedro Pérez Carreras and José Bonet, Barrelled locally convex spaces, North-Holland Mathematics Studies, vol. 131, North-Holland Publishing Co., Amsterdam, 1987. Notas de Matemática [Mathematical Notes], 113. MR 880207
- W. Ruess, A Grothendieck representation for the completion of cones of continuous seminorms, Math. Ann. 208 (1974), 71–90. MR 361702, DOI 10.1007/BF01432521
- Stephen A. Saxon, Nuclear and product spaces, Baire-like spaces, and the strongest locally convex topology, Math. Ann. 197 (1972), 87–106. MR 305010, DOI 10.1007/BF01419586
- Stephen A. Saxon, Metrizable barrelled countable enlargements, Bull. London Math. Soc. 31 (1999), no. 6, 711–718. MR 1711030, DOI 10.1112/S0024609399006281
- Stephen A. Saxon, Weak barrelledness versus P-spaces, Descriptive topology and functional analysis, Springer Proc. Math. Stat., vol. 80, Springer, Cham, 2014, pp. 27–32. MR 3238201, DOI 10.1007/978-3-319-05224-3_{2}
- Stephen A. Saxon, $(LF)$-spaces with more-than-separable quotients, J. Math. Anal. Appl. 434 (2016), no. 1, 12–19. MR 3404545, DOI 10.1016/j.jmaa.2015.09.005
- Stephen Saxon and Mark Levin, Every countable-codimensional subspace of a barrelled space is barrelled, Proc. Amer. Math. Soc. 29 (1971), 91–96. MR 280972, DOI 10.1090/S0002-9939-1971-0280972-0
- S. A. Saxon and L. M. Sánchez Ruiz, Optimal cardinals for metrizable barrelled spaces, J. London Math. Soc. (2) 51 (1995), no. 1, 137–147. MR 1310727, DOI 10.1112/jlms/51.1.137
- S. A. Saxon and L. M. Sánchez Ruiz, Barrelled countable enlargements and the bounding cardinal, J. London Math. Soc. (2) 53 (1996), no. 1, 158–166. MR 1362693, DOI 10.1112/jlms/53.1.158
- S. A. Saxon and L. M. Sánchez Ruiz, Barrelled countable enlargements and the dominating cardinal, J. Math. Anal. Appl. 203 (1996), no. 3, 677–685. MR 1417123, DOI 10.1006/jmaa.1996.0405
- Stephen A. Saxon and L. M. Sánchez Ruiz, Metrizable weak barrelledness and dimension, Bull. Polish Acad. Sci. Math. 49 (2001), no. 2, 97–101. MR 1829781
- Stephen A. Saxon and L. M. Sánchez Ruiz, Reinventing weak barrelledness, J. Convex Anal. 24 (2017), no. 3, 707–762. MR 3684799
- Jari Taskinen, Examples of nondistinguished Fréchet spaces, Ann. Acad. Sci. Fenn. Ser. A I Math. 14 (1989), no. 1, 75–88. MR 997972, DOI 10.5186/aasfm.1989.1431
- Vladimir V. Tkachuk, A $C_p$-theory problem book, Problem Books in Mathematics, Springer, New York, 2011. Topological and function spaces. MR 3024898, DOI 10.1007/978-1-4419-7442-6
- Aaron R. Todd and Stephen A. Saxon, A property of locally convex Baire spaces, Math. Ann. 206 (1973), 23–34. MR 328523, DOI 10.1007/BF01431526
Bibliographic Information
- J. C. Ferrando
- Affiliation: Centro de Investigación Operativa, Universidad Miguel Hernández, 03202 Elche, Spain
- MR Author ID: 256880
- Email: jc.ferrando@umh.es
- Stephen A. Saxon
- Affiliation: Department of Mathematics, University of Florida, Gainesville, Florida 32611
- MR Author ID: 155275
- Email: stephen_saxon@yahoo.com
- Received by editor(s): April 24, 2020
- Received by editor(s) in revised form: June 19, 2020, and December 4, 2020
- Published electronically: March 25, 2021
- Additional Notes: The first-named author was supported by Grant PGC2018-094431-B-I00 of the Ministry of Science, Innovation and Universities of Spain
- Communicated by: Stephen Dilworth
- © Copyright 2021 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 149 (2021), 2583-2596
- MSC (2020): Primary 46A08, 54C35
- DOI: https://doi.org/10.1090/proc/15439
- MathSciNet review: 4246809