Nonembeddability of persistence diagrams with $p>2$ Wasserstein metric
Author:
Alexander Wagner
Journal:
Proc. Amer. Math. Soc. 149 (2021), 2673-2677
MSC (2020):
Primary 55N99, 46C05
DOI:
https://doi.org/10.1090/proc/15451
Published electronically:
March 29, 2021
MathSciNet review:
4246816
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: Persistence diagrams do not admit an inner product structure compatible with any Wasserstein metric. Hence, when applying kernel methods to persistence diagrams, the underlying feature map necessarily causes distortion. We prove that persistence diagrams with the $p$-Wasserstein metric do not admit a coarse embedding into a Hilbert space when $p > 2$.
- Peter Bubenik and Alexander Wagner, Embeddings of persistence diagrams into Hilbert spaces, J. Appl. Comput. Topol. 4 (2020), no. 3, 339–351. MR 4130975, DOI https://doi.org/10.1007/s41468-020-00056-w
- Mathieu Carrière and Ulrich Bauer, On the metric distortion of embedding persistence diagrams into separable Hilbert spaces, 35th International Symposium on Computational Geometry, LIPIcs. Leibniz Int. Proc. Inform., vol. 129, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2019, pp. Art. No. 21, 15. MR 3968607
- William B. Johnson and N. Lovasoa Randrianarivony, $l_p\ (p>2)$ does not coarsely embed into a Hilbert space, Proc. Amer. Math. Soc. 134 (2006), no. 4, 1045–1050. MR 2196037, DOI https://doi.org/10.1090/S0002-9939-05-08415-7
- Piotr W. Nowak, Coarse embeddings of metric spaces into Banach spaces, Proc. Amer. Math. Soc. 133 (2005), no. 9, 2589–2596. MR 2146202, DOI https://doi.org/10.1090/S0002-9939-05-08150-5
- Katharine Turner and Gard Spreemann, Same but different: Distance correlations between topological summaries, Topological Data Analysis, Abel Symposia, Vol. 15, Springer, 2020, DOI 10.1007/978-3-030-43408-3_18.
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2020): 55N99, 46C05
Retrieve articles in all journals with MSC (2020): 55N99, 46C05
Additional Information
Alexander Wagner
Affiliation:
Department of Mathematics, University of Florida, Gainesville, Florida 32601
Address at time of publication:
Department of Mathematics, Duke University, Durham, North Carolina 27708
MR Author ID:
1382251
ORCID:
0000-0002-5961-7852
Email:
alexander.wagner@duke.edu
Received by editor(s):
February 18, 2020
Published electronically:
March 29, 2021
Communicated by:
Deane Yang
Article copyright:
© Copyright 2021
American Mathematical Society