Interior $C^2$ estimate for Monge-Ampère equation in dimension two
Author:
Jiakun Liu
Journal:
Proc. Amer. Math. Soc. 149 (2021), 2479-2486
MSC (2020):
Primary 35J96; Secondary 35J62
DOI:
https://doi.org/10.1090/proc/15459
Published electronically:
March 22, 2021
MathSciNet review:
4246799
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: We obtain a genuine local $C^2$ estimate for the Monge-Ampère equation in dimension two, by using the partial Legendre transform.
- A. Alexandroff, Smoothness of the convex surface of bounded Gaussian curvature, C. R. (Doklady) Acad. Sci. URSS (N.S.) 36 (1942), 195–199. MR 0007626
- Chuanqiang Chen, Fei Han, and Qianzhong Ou, The interior $C^2$ estimate for the Monge-Ampère equation in dimension $n=2$, Anal. PDE 9 (2016), no. 6, 1419–1432. MR 3555315, DOI https://doi.org/10.2140/apde.2016.9.1419
- Panagiota Daskalopoulos and Ovidiu Savin, On Monge-Ampère equations with homogeneous right-hand sides, Comm. Pure Appl. Math. 62 (2009), no. 5, 639–676. MR 2494810, DOI https://doi.org/10.1002/cpa.20263
- Alessio Figalli, The Monge-Ampère equation and its applications, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2017. MR 3617963
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190
- Pengfei Guan, Regularity of a class of quasilinear degenerate elliptic equations, Adv. Math. 132 (1997), no. 1, 24–45. MR 1488238, DOI https://doi.org/10.1006/aima.1997.1677
- Pengfei Guan and D. H. Phong, Partial Legendre transforms of non-linear equations, Proc. Amer. Math. Soc. 140 (2012), no. 11, 3831–3842. MR 2944724, DOI https://doi.org/10.1090/S0002-9939-2012-11210-9
- Erhard Heinz, On certain nonlinear elliptic differential equations and univalent mappings, J. Analyse Math. 5 (1956/57), 197–272. MR 136852, DOI https://doi.org/10.1007/BF02937346
- Erhard Heinz, On elliptic Monge-Ampère equations and Weyl’s embedding problem, J. Analyse Math. 7 (1959), 1–52. MR 111943, DOI https://doi.org/10.1007/BF02787679
- Qi-Rui Li, Two dimensional Monge-Ampère equations under incomplete Hölder assumptions, Math. Res. Lett. 24 (2017), no. 2, 481–501. MR 3685281, DOI https://doi.org/10.4310/MRL.2017.v24.n2.a11
- Jiakun Liu and Neil S. Trudinger, On Pogorelov estimates for Monge-Ampère type equations, Discrete Contin. Dyn. Syst. 28 (2010), no. 3, 1121–1135. MR 2644782, DOI https://doi.org/10.3934/dcds.2010.28.1121
- Louis Nirenberg, The Weyl and Minkowski problems in differential geometry in the large, Comm. Pure Appl. Math. 6 (1953), 337–394. MR 58265, DOI https://doi.org/10.1002/cpa.3160060303
- Aleksey Vasil′yevich Pogorelov, The Minkowski multidimensional problem, V. H. Winston & Sons, Washington, D.C.; Halsted Press [John Wiley & Sons], New York-Toronto-London, 1978. Translated from the Russian by Vladimir Oliker; Introduction by Louis Nirenberg; Scripta Series in Mathematics. MR 0478079
- Friedmar Schulz, Regularity theory for quasilinear elliptic systems and Monge-Ampère equations in two dimensions, Lecture Notes in Mathematics, vol. 1445, Springer-Verlag, Berlin, 1990. MR 1079936
- Neil S. Trudinger and Xu-Jia Wang, The Monge-Ampère equation and its geometric applications, Handbook of geometric analysis. No. 1, Adv. Lect. Math. (ALM), vol. 7, Int. Press, Somerville, MA, 2008, pp. 467–524. MR 2483373
- Xu-Jia Wang, Schauder estimates for elliptic and parabolic equations, Chinese Ann. Math. Ser. B 27 (2006), no. 6, 637–642. MR 2273802, DOI https://doi.org/10.1007/s11401-006-0142-3
- Y. Yuan, Special Lagrangian equations, Progress in Mathematics, vol. 333, Birkhauser, 2020, pp. 521–536.
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2020): 35J96, 35J62
Retrieve articles in all journals with MSC (2020): 35J96, 35J62
Additional Information
Jiakun Liu
Affiliation:
School of Mathematics and Applied Statistics, University of Wollongong, Wollongong, New South Wales 2522, Australia
MR Author ID:
862211
ORCID:
0000-0003-4409-4187
Email:
jiakunl@uow.edu.au
Received by editor(s):
July 27, 2020
Published electronically:
March 22, 2021
Additional Notes:
This work was partially supported by the Australian Research Council DP170100929 and DP200101084.
Communicated by:
Ryan Hynd
Article copyright:
© Copyright 2021
American Mathematical Society