Interior $C^2$ estimate for Monge-Ampère equation in dimension two
HTML articles powered by AMS MathViewer
- by Jiakun Liu
- Proc. Amer. Math. Soc. 149 (2021), 2479-2486
- DOI: https://doi.org/10.1090/proc/15459
- Published electronically: March 22, 2021
- PDF | Request permission
Abstract:
We obtain a genuine local $C^2$ estimate for the Monge-Ampère equation in dimension two, by using the partial Legendre transform.References
- A. Alexandroff, Smoothness of the convex surface of bounded Gaussian curvature, C. R. (Doklady) Acad. Sci. URSS (N.S.) 36 (1942), 195–199. MR 0007626
- Chuanqiang Chen, Fei Han, and Qianzhong Ou, The interior $C^2$ estimate for the Monge-Ampère equation in dimension $n=2$, Anal. PDE 9 (2016), no. 6, 1419–1432. MR 3555315, DOI 10.2140/apde.2016.9.1419
- Panagiota Daskalopoulos and Ovidiu Savin, On Monge-Ampère equations with homogeneous right-hand sides, Comm. Pure Appl. Math. 62 (2009), no. 5, 639–676. MR 2494810, DOI 10.1002/cpa.20263
- Alessio Figalli, The Monge-Ampère equation and its applications, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2017. MR 3617963, DOI 10.4171/170
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190, DOI 10.1007/978-3-642-61798-0
- Pengfei Guan, Regularity of a class of quasilinear degenerate elliptic equations, Adv. Math. 132 (1997), no. 1, 24–45. MR 1488238, DOI 10.1006/aima.1997.1677
- Pengfei Guan and D. H. Phong, Partial Legendre transforms of non-linear equations, Proc. Amer. Math. Soc. 140 (2012), no. 11, 3831–3842. MR 2944724, DOI 10.1090/S0002-9939-2012-11210-9
- Erhard Heinz, On certain nonlinear elliptic differential equations and univalent mappings, J. Analyse Math. 5 (1956/57), 197–272. MR 136852, DOI 10.1007/BF02937346
- Erhard Heinz, On elliptic Monge-Ampère equations and Weyl’s embedding problem, J. Analyse Math. 7 (1959), 1–52. MR 111943, DOI 10.1007/BF02787679
- Qi-Rui Li, Two dimensional Monge-Ampère equations under incomplete Hölder assumptions, Math. Res. Lett. 24 (2017), no. 2, 481–501. MR 3685281, DOI 10.4310/MRL.2017.v24.n2.a11
- Jiakun Liu and Neil S. Trudinger, On Pogorelov estimates for Monge-Ampère type equations, Discrete Contin. Dyn. Syst. 28 (2010), no. 3, 1121–1135. MR 2644782, DOI 10.3934/dcds.2010.28.1121
- Louis Nirenberg, The Weyl and Minkowski problems in differential geometry in the large, Comm. Pure Appl. Math. 6 (1953), 337–394. MR 58265, DOI 10.1002/cpa.3160060303
- Aleksey Vasil′yevich Pogorelov, The Minkowski multidimensional problem, Scripta Series in Mathematics, V. H. Winston & Sons, Washington, D.C.; Halsted Press [John Wiley & Sons], New York-Toronto-London, 1978. Translated from the Russian by Vladimir Oliker; Introduction by Louis Nirenberg. MR 0478079
- Friedmar Schulz, Regularity theory for quasilinear elliptic systems and Monge-Ampère equations in two dimensions, Lecture Notes in Mathematics, vol. 1445, Springer-Verlag, Berlin, 1990. MR 1079936, DOI 10.1007/BFb0098277
- Neil S. Trudinger and Xu-Jia Wang, The Monge-Ampère equation and its geometric applications, Handbook of geometric analysis. No. 1, Adv. Lect. Math. (ALM), vol. 7, Int. Press, Somerville, MA, 2008, pp. 467–524. MR 2483373
- Xu-Jia Wang, Schauder estimates for elliptic and parabolic equations, Chinese Ann. Math. Ser. B 27 (2006), no. 6, 637–642. MR 2273802, DOI 10.1007/s11401-006-0142-3
- Y. Yuan, Special Lagrangian equations, Progress in Mathematics, vol. 333, Birkhauser, 2020, pp. 521–536.
Bibliographic Information
- Jiakun Liu
- Affiliation: School of Mathematics and Applied Statistics, University of Wollongong, Wollongong, New South Wales 2522, Australia
- MR Author ID: 862211
- ORCID: 0000-0003-4409-4187
- Email: jiakunl@uow.edu.au
- Received by editor(s): July 27, 2020
- Published electronically: March 22, 2021
- Additional Notes: This work was partially supported by the Australian Research Council DP170100929 and DP200101084.
- Communicated by: Ryan Hynd
- © Copyright 2021 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 149 (2021), 2479-2486
- MSC (2020): Primary 35J96; Secondary 35J62
- DOI: https://doi.org/10.1090/proc/15459
- MathSciNet review: 4246799