## Cycles, cocycles, and duality on tropical manifolds

HTML articles powered by AMS MathViewer

- by Andreas Gross and Farbod Shokrieh PDF
- Proc. Amer. Math. Soc.
**149**(2021), 2429-2444 Request permission

## Abstract:

We prove a Poincaré duality for the Chow rings of smooth fans whose support are tropical linear spaces. As a consequence, we show that cycles and cocycles on tropical manifolds are Poincaré dual to each other. This allows us to define pull-backs of tropical cycles along arbitrary morphisms with smooth target.## References

- Federico Ardila, Graham Denham, and June Huh,
*Lagrangian geometry of matroids*, 2020. arXiv:2004.13116. - Karim Adiprasito,
*Combinatorial lefschetz theorems beyond positivity*, 2018. arXiv:1812.10454. - Karim Adiprasito, June Huh, and Eric Katz,
*Hodge theory for combinatorial geometries*, Ann. of Math. (2)**188**(2018), no. 2, 381–452. MR**3862944**, DOI 10.4007/annals.2018.188.2.1 - Federico Ardila and Caroline J. Klivans,
*The Bergman complex of a matroid and phylogenetic trees*, J. Combin. Theory Ser. B**96**(2006), no. 1, 38–49. MR**2185977**, DOI 10.1016/j.jctb.2005.06.004 - Omid Amini and Matthieu Piquerez,
*Hodge theory for tropical varieties*, 2020. arXiv:2007.07826. - Lars Allermann and Johannes Rau,
*First steps in tropical intersection theory*, Math. Z.**264**(2010), no. 3, 633–670. MR**2591823**, DOI 10.1007/s00209-009-0483-1 - Spencer Backman, Christopher Eur, and Connor Simpson,
*Simplicial generation of Chow rings of matroids*, 2019. arXiv:1905.07114. - Michel Brion,
*Piecewise polynomial functions, convex polytopes and enumerative geometry*, Parameter spaces (Warsaw, 1994) Banach Center Publ., vol. 36, Polish Acad. Sci. Inst. Math., Warsaw, 1996, pp. 25–44. MR**1481477** - David A. Cox, John B. Little, and Henry K. Schenck,
*Toric varieties*, Graduate Studies in Mathematics, vol. 124, American Mathematical Society, Providence, RI, 2011. MR**2810322**, DOI 10.1090/gsm/124 - W. Fulton, R. MacPherson, F. Sottile, and B. Sturmfels,
*Intersection theory on spherical varieties*, J. Algebraic Geom.**4**(1995), no. 1, 181–193. MR**1299008** - Georges François and Johannes Rau,
*The diagonal of tropical matroid varieties and cycle intersections*, Collect. Math.**64**(2013), no. 2, 185–210. MR**3041763**, DOI 10.1007/s13348-012-0072-1 - Georges Francois,
*Cocycles on tropical varieties via piecewise polynomials*, Proc. Amer. Math. Soc.**141**(2013), no. 2, 481–497. MR**2996952**, DOI 10.1090/S0002-9939-2012-11359-0 - Eva Maria Feichtner and Bernd Sturmfels,
*Matroid polytopes, nested sets and Bergman fans*, Port. Math. (N.S.)**62**(2005), no. 4, 437–468. MR**2191630** - William Fulton and Bernd Sturmfels,
*Intersection theory on toric varieties*, Topology**36**(1997), no. 2, 335–353. MR**1415592**, DOI 10.1016/0040-9383(96)00016-X - William Fulton,
*Intersection theory*, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, Springer-Verlag, Berlin, 1998. MR**1644323**, DOI 10.1007/978-1-4612-1700-8 - Andreas Gross and Farbod Shokrieh,
*A sheaf-theoretic approach to tropical homology*, 2019. arXiv:1906.09245. - Philipp Jell, Johannes Rau, and Kristin Shaw,
*Lefschetz $(1,1)$-theorem in tropical geometry*, Épijournal Géom. Algébrique**2**(2018), Art. 11, 27 (English, with English and French summaries). MR**3894860**, DOI 10.46298/epiga.2018.volume2.4126 - Philipp Jell, Kristin Shaw, and Jascha Smacka,
*Superforms, tropical cohomology, and Poincaré duality*, Adv. Geom.**19**(2019), no. 1, 101–130. MR**3903579**, DOI 10.1515/advgeom-2018-0006 - Eric Katz,
*A tropical toolkit*, Expo. Math.**27**(2009), no. 1, 1–36. MR**2503041**, DOI 10.1016/j.exmath.2008.04.003 - Eric Katz,
*Tropical intersection theory from toric varieties*, Collect. Math.**63**(2012), no. 1, 29–44. MR**2887109**, DOI 10.1007/s13348-010-0014-8 - Eric Katz and Sam Payne,
*Piecewise polynomials, Minkowski weights, and localization on toric varieties*, Algebra Number Theory**2**(2008), no. 2, 135–155. MR**2377366**, DOI 10.2140/ant.2008.2.135 - Diane Maclagan and Bernd Sturmfels,
*Introduction to tropical geometry*, Graduate Studies in Mathematics, vol. 161, American Mathematical Society, Providence, RI, 2015. MR**3287221**, DOI 10.1090/gsm/161 - James Oxley,
*Matroid theory*, 2nd ed., Oxford Graduate Texts in Mathematics, vol. 21, Oxford University Press, Oxford, 2011. MR**2849819**, DOI 10.1093/acprof:oso/9780198566946.001.0001 - Dan Petersen,
*Poincaré duality of wonderful compactifications and tautological rings*, Int. Math. Res. Not. IMRN**17**(2016), 5187–5201. MR**3556436**, DOI 10.1093/imrn/rnv296 - Johannes Rau,
*Intersections on tropical moduli spaces*, Rocky Mountain J. Math.**46**(2016), no. 2, 581–662. MR**3529085**, DOI 10.1216/RMJ-2016-46-2-581 - Kristin M. Shaw,
*A tropical intersection product in matroidal fans*, SIAM J. Discrete Math.**27**(2013), no. 1, 459–491. MR**3032930**, DOI 10.1137/110850141 - Bernd Sturmfels and Jenia Tevelev,
*Elimination theory for tropical varieties*, Math. Res. Lett.**15**(2008), no. 3, 543–562. MR**2407231**, DOI 10.4310/MRL.2008.v15.n3.a14 - Jenia Tevelev,
*Compactifications of subvarieties of tori*, Amer. J. Math.**129**(2007), no. 4, 1087–1104. MR**2343384**, DOI 10.1353/ajm.2007.0029 - Jarosław Włodarczyk,
*Decomposition of birational toric maps in blow-ups & blow-downs*, Trans. Amer. Math. Soc.**349**(1997), no. 1, 373–411. MR**1370654**, DOI 10.1090/S0002-9947-97-01701-7

## Additional Information

**Andreas Gross**- Affiliation: Department of Mathematics, Colorado State University, Fort Collins, Colorado 80523
- MR Author ID: 1105426
- Email: andreas.gross@colostate.edu
**Farbod Shokrieh**- Affiliation: Department of Mathematics, University of Washington, Seattle, Washington 98195
- MR Author ID: 917599
- ORCID: 0000-0002-6815-3420
- Email: farbod@uw.edu
- Received by editor(s): September 11, 2020
- Received by editor(s) in revised form: December 8, 2020
- Published electronically: March 26, 2021
- Communicated by: Rachel Pries
- © Copyright 2021 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**149**(2021), 2429-2444 - MSC (2020): Primary 14T10, 14C17, 05B35, 52B99
- DOI: https://doi.org/10.1090/proc/15468
- MathSciNet review: 4246795