Cycles, cocycles, and duality on tropical manifolds
HTML articles powered by AMS MathViewer
- by Andreas Gross and Farbod Shokrieh
- Proc. Amer. Math. Soc. 149 (2021), 2429-2444
- DOI: https://doi.org/10.1090/proc/15468
- Published electronically: March 26, 2021
- PDF | Request permission
Abstract:
We prove a Poincaré duality for the Chow rings of smooth fans whose support are tropical linear spaces. As a consequence, we show that cycles and cocycles on tropical manifolds are Poincaré dual to each other. This allows us to define pull-backs of tropical cycles along arbitrary morphisms with smooth target.References
- Federico Ardila, Graham Denham, and June Huh, Lagrangian geometry of matroids, 2020. arXiv:2004.13116.
- Karim Adiprasito, Combinatorial lefschetz theorems beyond positivity, 2018. arXiv:1812.10454.
- Karim Adiprasito, June Huh, and Eric Katz, Hodge theory for combinatorial geometries, Ann. of Math. (2) 188 (2018), no. 2, 381–452. MR 3862944, DOI 10.4007/annals.2018.188.2.1
- Federico Ardila and Caroline J. Klivans, The Bergman complex of a matroid and phylogenetic trees, J. Combin. Theory Ser. B 96 (2006), no. 1, 38–49. MR 2185977, DOI 10.1016/j.jctb.2005.06.004
- Omid Amini and Matthieu Piquerez, Hodge theory for tropical varieties, 2020. arXiv:2007.07826.
- Lars Allermann and Johannes Rau, First steps in tropical intersection theory, Math. Z. 264 (2010), no. 3, 633–670. MR 2591823, DOI 10.1007/s00209-009-0483-1
- Spencer Backman, Christopher Eur, and Connor Simpson, Simplicial generation of Chow rings of matroids, 2019. arXiv:1905.07114.
- Michel Brion, Piecewise polynomial functions, convex polytopes and enumerative geometry, Parameter spaces (Warsaw, 1994) Banach Center Publ., vol. 36, Polish Acad. Sci. Inst. Math., Warsaw, 1996, pp. 25–44. MR 1481477
- David A. Cox, John B. Little, and Henry K. Schenck, Toric varieties, Graduate Studies in Mathematics, vol. 124, American Mathematical Society, Providence, RI, 2011. MR 2810322, DOI 10.1090/gsm/124
- W. Fulton, R. MacPherson, F. Sottile, and B. Sturmfels, Intersection theory on spherical varieties, J. Algebraic Geom. 4 (1995), no. 1, 181–193. MR 1299008
- Georges François and Johannes Rau, The diagonal of tropical matroid varieties and cycle intersections, Collect. Math. 64 (2013), no. 2, 185–210. MR 3041763, DOI 10.1007/s13348-012-0072-1
- Georges Francois, Cocycles on tropical varieties via piecewise polynomials, Proc. Amer. Math. Soc. 141 (2013), no. 2, 481–497. MR 2996952, DOI 10.1090/S0002-9939-2012-11359-0
- Eva Maria Feichtner and Bernd Sturmfels, Matroid polytopes, nested sets and Bergman fans, Port. Math. (N.S.) 62 (2005), no. 4, 437–468. MR 2191630
- William Fulton and Bernd Sturmfels, Intersection theory on toric varieties, Topology 36 (1997), no. 2, 335–353. MR 1415592, DOI 10.1016/0040-9383(96)00016-X
- William Fulton, Intersection theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, Springer-Verlag, Berlin, 1998. MR 1644323, DOI 10.1007/978-1-4612-1700-8
- Andreas Gross and Farbod Shokrieh, A sheaf-theoretic approach to tropical homology, 2019. arXiv:1906.09245.
- Philipp Jell, Johannes Rau, and Kristin Shaw, Lefschetz $(1,1)$-theorem in tropical geometry, Épijournal Géom. Algébrique 2 (2018), Art. 11, 27 (English, with English and French summaries). MR 3894860, DOI 10.46298/epiga.2018.volume2.4126
- Philipp Jell, Kristin Shaw, and Jascha Smacka, Superforms, tropical cohomology, and Poincaré duality, Adv. Geom. 19 (2019), no. 1, 101–130. MR 3903579, DOI 10.1515/advgeom-2018-0006
- Eric Katz, A tropical toolkit, Expo. Math. 27 (2009), no. 1, 1–36. MR 2503041, DOI 10.1016/j.exmath.2008.04.003
- Eric Katz, Tropical intersection theory from toric varieties, Collect. Math. 63 (2012), no. 1, 29–44. MR 2887109, DOI 10.1007/s13348-010-0014-8
- Eric Katz and Sam Payne, Piecewise polynomials, Minkowski weights, and localization on toric varieties, Algebra Number Theory 2 (2008), no. 2, 135–155. MR 2377366, DOI 10.2140/ant.2008.2.135
- Diane Maclagan and Bernd Sturmfels, Introduction to tropical geometry, Graduate Studies in Mathematics, vol. 161, American Mathematical Society, Providence, RI, 2015. MR 3287221, DOI 10.1090/gsm/161
- James Oxley, Matroid theory, 2nd ed., Oxford Graduate Texts in Mathematics, vol. 21, Oxford University Press, Oxford, 2011. MR 2849819, DOI 10.1093/acprof:oso/9780198566946.001.0001
- Dan Petersen, Poincaré duality of wonderful compactifications and tautological rings, Int. Math. Res. Not. IMRN 17 (2016), 5187–5201. MR 3556436, DOI 10.1093/imrn/rnv296
- Johannes Rau, Intersections on tropical moduli spaces, Rocky Mountain J. Math. 46 (2016), no. 2, 581–662. MR 3529085, DOI 10.1216/RMJ-2016-46-2-581
- Kristin M. Shaw, A tropical intersection product in matroidal fans, SIAM J. Discrete Math. 27 (2013), no. 1, 459–491. MR 3032930, DOI 10.1137/110850141
- Bernd Sturmfels and Jenia Tevelev, Elimination theory for tropical varieties, Math. Res. Lett. 15 (2008), no. 3, 543–562. MR 2407231, DOI 10.4310/MRL.2008.v15.n3.a14
- Jenia Tevelev, Compactifications of subvarieties of tori, Amer. J. Math. 129 (2007), no. 4, 1087–1104. MR 2343384, DOI 10.1353/ajm.2007.0029
- Jarosław Włodarczyk, Decomposition of birational toric maps in blow-ups & blow-downs, Trans. Amer. Math. Soc. 349 (1997), no. 1, 373–411. MR 1370654, DOI 10.1090/S0002-9947-97-01701-7
Bibliographic Information
- Andreas Gross
- Affiliation: Department of Mathematics, Colorado State University, Fort Collins, Colorado 80523
- MR Author ID: 1105426
- Email: andreas.gross@colostate.edu
- Farbod Shokrieh
- Affiliation: Department of Mathematics, University of Washington, Seattle, Washington 98195
- MR Author ID: 917599
- ORCID: 0000-0002-6815-3420
- Email: farbod@uw.edu
- Received by editor(s): September 11, 2020
- Received by editor(s) in revised form: December 8, 2020
- Published electronically: March 26, 2021
- Communicated by: Rachel Pries
- © Copyright 2021 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 149 (2021), 2429-2444
- MSC (2020): Primary 14T10, 14C17, 05B35, 52B99
- DOI: https://doi.org/10.1090/proc/15468
- MathSciNet review: 4246795