Sharp diameter bound on the spectral gap for quantum graphs
HTML articles powered by AMS MathViewer
- by David Borthwick, Livia Corsi and Kenny Jones
- Proc. Amer. Math. Soc. 149 (2021), 2879-2890
- DOI: https://doi.org/10.1090/proc/15090
- Published electronically: April 29, 2021
- PDF | Request permission
Abstract:
We establish an upper bound on the spectral gap for compact quantum graphs which depends only on the diameter and total number of vertices. This bound is asymptotically sharp for pumpkin chains with number of edges tending to infinity.References
- Ram Band and Guillaume Lévy, Quantum graphs which optimize the spectral gap, Ann. Henri Poincaré 18 (2017), no. 10, 3269–3323. MR 3697195, DOI 10.1007/s00023-017-0601-2
- G. Berkolaiko and P. Kuchment, Dependence of the spectrum of a quantum graph on vertex conditions and edge lengths, Spectral geometry, Proc. Sympos. Pure Math., vol. 84, Amer. Math. Soc., Providence, RI, 2012, pp. 117–137. MR 2985312, DOI 10.1090/pspum/084/1352
- Gregory Berkolaiko, James B. Kennedy, Pavel Kurasov, and Delio Mugnolo, Edge connectivity and the spectral gap of combinatorial and quantum graphs, J. Phys. A 50 (2017), no. 36, 365201, 29. MR 3688110, DOI 10.1088/1751-8121/aa8125
- Gregory Berkolaiko, James B. Kennedy, Pavel Kurasov, and Delio Mugnolo, Surgery principles for the spectral analysis of quantum graphs, Trans. Amer. Math. Soc. 372 (2019), no. 7, 5153–5197. MR 4009401, DOI 10.1090/tran/7864
- Gregory Berkolaiko and Peter Kuchment, Introduction to quantum graphs, Mathematical Surveys and Monographs, vol. 186, American Mathematical Society, Providence, RI, 2013. MR 3013208, DOI 10.1090/surv/186
- Leonid Friedlander, Extremal properties of eigenvalues for a metric graph, Ann. Inst. Fourier (Grenoble) 55 (2005), no. 1, 199–211 (English, with English and French summaries). MR 2141695
- J. B. Kennedy, A sharp eigenvalue bound for quantum graphs in terms of the diameter, preprint, arXiv:1807.08185, 2018.
- James B. Kennedy, Pavel Kurasov, Gabriela Malenová, and Delio Mugnolo, On the spectral gap of a quantum graph, Ann. Henri Poincaré 17 (2016), no. 9, 2439–2473. MR 3535868, DOI 10.1007/s00023-016-0460-2
- P. Kurasov, G. Malenová, and S. Naboko, Spectral gap for quantum graphs and their edge connectivity, J. Phys. A 46 (2013), no. 27, 275309, 16. MR 3081922, DOI 10.1088/1751-8113/46/27/275309
- Pavel Kurasov and Sergey Naboko, Rayleigh estimates for differential operators on graphs, J. Spectr. Theory 4 (2014), no. 2, 211–219. MR 3232809, DOI 10.4171/JST/67
- Serge Nicaise, Spectre des réseaux topologiques finis, Bull. Sci. Math. (2) 111 (1987), no. 4, 401–413 (French, with English summary). MR 921561
Bibliographic Information
- David Borthwick
- Affiliation: Department of Mathematics, Emory University, Atlanta, Georgia 30322
- MR Author ID: 328585
- Email: dborthw@emory.edu
- Livia Corsi
- Affiliation: Dipartimento di Matematica e Fisica, Università di Roma Tre, Rome, I-00146, Italy
- MR Author ID: 857630
- Email: lcorsi@mat.uniroma3.it
- Kenny Jones
- Affiliation: Department of Mathematics, Emory University, Atlanta, Georgia 30322
- Email: wesley.kenderdine.jones@emory.edu
- Received by editor(s): December 2, 2019
- Received by editor(s) in revised form: February 29, 2020
- Published electronically: April 29, 2021
- Communicated by: Tanya Christiansen
- © Copyright 2021 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 149 (2021), 2879-2890
- MSC (2020): Primary 34B45, 81Q35
- DOI: https://doi.org/10.1090/proc/15090
- MathSciNet review: 4257802