Some hermitian K-groups via geometric topology
HTML articles powered by AMS MathViewer
- by Manuel Krannich and Alexander Kupers
- Proc. Amer. Math. Soc. 149 (2021), 2745-2752
- DOI: https://doi.org/10.1090/proc/15098
- Published electronically: April 22, 2021
- PDF | Request permission
Abstract:
We compute the first two symplectic quadratic K-theory groups of the integers, or equivalently, the first two stable homology groups of the group of symplectic integral matrices preserving the standard quadratic refinement. The main novelty in our calculation lies in its method, which is based on high-dimensional manifold theory.References
- Dominique Arlettaz, The first $k$-invariant of a double loop space is trivial, Arch. Math. (Basel) 54 (1990), no. 1, 84–92. MR 1029601, DOI 10.1007/BF01190672
- Anthony Bak, $K$-theory of forms, Annals of Mathematics Studies, No. 98, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1981. MR 632404
- Helmut Behr, Explizite Präsentation von Chevalley-gruppen über Z, Math. Z. 141 (1975), 235–241. MR 422442, DOI 10.1007/BF01247309
- William Browder, Surgery on simply-connected manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 65, Springer-Verlag, New York-Heidelberg, 1972. MR 0358813
- B. Calmès, E. Dotto, Y. Harpaz, F. Hebestreit, M. Land, K. Moi, D. Nardin, T. Nikolaus, and W. Steimle, Hermitian K-theory of stable infinity-categories III: Grothendieck-Will groups of rings, arXiv:2009.07225 (2021).
- Ruth Charney, A generalization of a theorem of Vogtmann, Proceedings of the Northwestern conference on cohomology of groups (Evanston, Ill., 1985), 1987, pp. 107–125. MR 885099, DOI 10.1016/0022-4049(87)90019-3
- R. Endres, Multiplikatorsysteme der symplektischen Thetagruppe, Monatsh. Math. 94 (1982), no. 4, 281–297 (German, with English summary). MR 685375, DOI 10.1007/BF01667383
- V. Gritsenko, K. Hulek, and G. K. Sankaran, Abelianisation of orthogonal groups and the fundamental group of modular varieties, J. Algebra 322 (2009), no. 2, 463–478. MR 2529099, DOI 10.1016/j.jalgebra.2009.01.037
- V. Giambalvo, On $\langle 8\rangle$-cobordism, Illinois J. Math. 15 (1971), 533–541. MR 287553
- Søren Galatius and Oscar Randal-Williams, Stable moduli spaces of high-dimensional manifolds, Acta Math. 212 (2014), no. 2, 257–377. MR 3207759, DOI 10.1007/s11511-014-0112-7
- Søren Galatius and Oscar Randal-Williams, Abelian quotients of mapping class groups of highly connected manifolds, Math. Ann. 365 (2016), no. 1-2, 857–879. MR 3498929, DOI 10.1007/s00208-015-1300-2
- Søren Galatius and Oscar Randal-Williams, Homological stability for moduli spaces of high dimensional manifolds. I, J. Amer. Math. Soc. 31 (2018), no. 1, 215–264. MR 3718454, DOI 10.1090/jams/884
- C. S. Hoo and M. E. Mahowald, Some homotopy groups of Stiefel manifolds, Bull. Amer. Math. Soc. 71 (1965), 661–667. MR 177412, DOI 10.1090/S0002-9904-1965-11387-8
- Alexander J. Hahn and O. Timothy O’Meara, The classical groups and $K$-theory, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 291, Springer-Verlag, Berlin, 1989. With a foreword by J. Dieudonné. MR 1007302, DOI 10.1007/978-3-662-13152-7
- G. Hochschild and J.-P. Serre, Cohomology of group extensions, Trans. Amer. Math. Soc. 74 (1953), 110–134. MR 52438, DOI 10.1090/S0002-9947-1953-0052438-8
- Dennis Johnson and John J. Millson, Modular Lagrangians and the theta multiplier, Invent. Math. 100 (1990), no. 1, 143–165. MR 1037145, DOI 10.1007/BF01231183
- Max Karoubi, Théorie de Quillen et homologie du groupe orthogonal, Ann. of Math. (2) 112 (1980), no. 2, 207–257 (French). MR 592291, DOI 10.2307/1971326
- Michel A. Kervaire and John W. Milnor, Groups of homotopy spheres. I, Ann. of Math. (2) 77 (1963), 504–537. MR 148075, DOI 10.1090/S0273-0979-2015-01504-1
- M. Krannich, Mapping class groups of highly connected $(4k+2)$-manifolds, Selecta Math. 26 (2020), 81.
- M. Kreck, Isotopy classes of diffeomorphisms of $(k-1)$-connected almost-parallelizable $2k$-manifolds, Algebraic topology, Aarhus 1978 (Proc. Sympos., Univ. Aarhus, Aarhus, 1978), Lecture Notes in Math., vol. 763, Springer, Berlin, 1979, pp. 643–663. MR 561244
- J. P. Levine, Lectures on groups of homotopy spheres, Algebraic and geometric topology (New Brunswick, N.J., 1983) Lecture Notes in Math., vol. 1126, Springer, Berlin, 1985, pp. 62–95. MR 802786, DOI 10.1007/BFb0074439
- Werner Meyer, Die Signatur von lokalen Koeffizientensystemen und Faserbündeln, Bonn. Math. Schr. 53 (1972), viii+59 (German). MR 305402
- Werner Meyer, Die Signatur von Flächenbündeln, Math. Ann. 201 (1973), 239–264 (German). MR 331382, DOI 10.1007/BF01427946
- G. F. Paechter, The groups $\pi _{r}(V_{n,\,m})$. I, Quart. J. Math. Oxford Ser. (2) 7 (1956), 249–268. MR 131878, DOI 10.1093/qmath/7.1.249
- Andrew Putman, The Picard group of the moduli space of curves with level structures, Duke Math. J. 161 (2012), no. 4, 623–674. MR 2891531, DOI 10.1215/00127094-1548362
- Marco Schlichting, Symplectic and orthogonal $K$-groups of the integers, C. R. Math. Acad. Sci. Paris 357 (2019), no. 8, 686–690 (English, with English and French summaries). MR 4015334, DOI 10.1016/j.crma.2019.08.001
Bibliographic Information
- Manuel Krannich
- Affiliation: Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WB, United Kingdom
- MR Author ID: 1345715
- ORCID: 0000-0003-1994-5330
- Email: krannich@dpmms.cam.ac.uk
- Alexander Kupers
- Affiliation: Department of Computer and Mathematical Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
- MR Author ID: 1053091
- Email: a.kupers@utoronto.ca
- Received by editor(s): October 28, 2019
- Received by editor(s) in revised form: February 29, 2020, and March 14, 2020
- Published electronically: April 22, 2021
- Additional Notes: The first author was supported by O. Randal-Williams’ Philip Leverhulme Prize from the Leverhulme Trust and by the ERC under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 756444).
The second author was supported by NSF grant DMS-1803766. - Communicated by: Mark Behrens
- © Copyright 2021 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 149 (2021), 2745-2752
- MSC (2020): Primary 19G38, 57S05, 55P47
- DOI: https://doi.org/10.1090/proc/15098
- MathSciNet review: 4257790