Regularity of parity binomial edge ideals
HTML articles powered by AMS MathViewer
- by Arvind Kumar
- Proc. Amer. Math. Soc. 149 (2021), 2727-2737
- DOI: https://doi.org/10.1090/proc/15434
- Published electronically: April 22, 2021
- PDF | Request permission
Abstract:
Let $G$ be a simple graph on $n$ vertices and $\mathcal {I}_G$ denotes parity binomial edge ideal of $G$ in the polynomial ring $S = \mathbb {K}[x_1,\ldots , x_n, y_1, \ldots , y_n].$ We obtain lower bound for the regularity of parity binomial edge ideals of graphs. We then classify all graphs whose parity binomial edge ideals have regularity $3$. We classify graphs whose parity binomial edge ideals have pure resolution.References
- Davide Bolognini, Antonio Macchia, and Francesco Strazzanti, Binomial edge ideals of bipartite graphs, European J. Combin. 70 (2018), 1–25. MR 3779601, DOI 10.1016/j.ejc.2017.11.004
- Aldo Conca and Volkmar Welker, Lovász-Saks-Schrijver ideals and coordinate sections of determinantal varieties, Algebra Number Theory 13 (2019), no. 2, 455–484. MR 3927052, DOI 10.2140/ant.2019.13.455
- Jürgen Herzog, Takayuki Hibi, Freyja Hreinsdóttir, Thomas Kahle, and Johannes Rauh, Binomial edge ideals and conditional independence statements, Adv. in Appl. Math. 45 (2010), no. 3, 317–333. MR 2669070, DOI 10.1016/j.aam.2010.01.003
- Jürgen Herzog, Antonio Macchia, Sara Saeedi Madani, and Volkmar Welker, On the ideal of orthogonal representations of a graph in $\Bbb {R}^2$, Adv. in Appl. Math. 71 (2015), 146–173. MR 3406962, DOI 10.1016/j.aam.2015.09.009
- Do Trong Hoang and Thomas Kahle, Hilbert-poincaré series of parity binomial edge ideals and permanental ideals of complete graphs, Collect. Math., to appear.
- A. V. Jayanthan and Arvind Kumar, Regularity of binomial edge ideals of Cohen-Macaulay bipartite graphs, Comm. Algebra 47 (2019), no. 11, 4797–4805. MR 3991052, DOI 10.1080/00927872.2019.1596278
- A. V. Jayanthan, N. Narayanan, and B. V. Raghavendra Rao, Regularity of binomial edge ideals of certain block graphs, Proc. Indian Acad. Sci. Math. Sci. 129 (2019), no. 3, Paper No. 36, 10. MR 3941158, DOI 10.1007/s12044-019-0480-1
- A. V. Jayanthan, N. Narayanan, and B. V. Raghavendra Rao, An upper bound for the regularity of binomial edge ideals of trees, J. Algebra Appl. 18 (2019), no. 9, 1950170, 7. MR 3981703, DOI 10.1142/S0219498819501706
- Thomas Kahle and Jonas Krüsemann, Binomial edge ideals of cographs, arXiv e-prints, arXiv:1906.05510, 2019.
- Thomas Kahle, Camilo Sarmiento, and Tobias Windisch, Parity binomial edge ideals, J. Algebraic Combin. 44 (2016), no. 1, 99–117. MR 3514772, DOI 10.1007/s10801-015-0657-3
- Dariush Kiani and Sara Saeedi Madani, Binomial edge ideals with pure resolutions, Collect. Math. 65 (2014), no. 3, 331–340. MR 3240997, DOI 10.1007/s13348-014-0107-x
- Dariush Kiani and Sara Saeedi Madani, The Castelnuovo-Mumford regularity of binomial edge ideals, J. Combin. Theory Ser. A 139 (2016), 80–86. MR 3436053, DOI 10.1016/j.jcta.2015.11.004
- Arvind Kumar, Lovász-Saks-Schrijver ideals and parity binomial edge ideals of graphs, European J. Combin. 93 (2021), Paper No. 103274, 19. MR 4186617, DOI 10.1016/j.ejc.2020.103274
- L. Lovász, M. Saks, and A. Schrijver, Orthogonal representations and connectivity of graphs, Linear Algebra Appl. 114/115 (1989), 439–454. MR 986889, DOI 10.1016/0024-3795(89)90475-8
- László Lovász, On the Shannon capacity of a graph, IEEE Trans. Inform. Theory 25 (1979), no. 1, 1–7. MR 514926, DOI 10.1109/TIT.1979.1055985
- Carla Mascia and Giancarlo Rinaldo, Krull dimension and regularity of binomial edge ideals of block graphs, J. Algebra Appl. 19 (2020), no. 7, 2050133, 17. MR 4129180, DOI 10.1142/S0219498820501339
- Kazunori Matsuda and Satoshi Murai, Regularity bounds for binomial edge ideals, J. Commut. Algebra 5 (2013), no. 1, 141–149. MR 3084125, DOI 10.1216/jca-2013-5-1-141
- Fatemeh Mohammadi and Leila Sharifan, Hilbert function of binomial edge ideals, Comm. Algebra 42 (2014), no. 2, 688–703. MR 3169597, DOI 10.1080/00927872.2012.721037
- Hidefumi Ohsugi, Jürgen Herzog, and Takayuki Hibi, Combinatorial pure subrings, Osaka J. Math. 37 (2000), no. 3, 745–757. MR 1789447
- Masahiro Ohtani, Graphs and ideals generated by some 2-minors, Comm. Algebra 39 (2011), no. 3, 905–917. MR 2782571, DOI 10.1080/00927870903527584
- Irena Peeva, Graded syzygies, Algebra and Applications, vol. 14, Springer-Verlag London, Ltd., London, 2011. MR 2560561, DOI 10.1007/978-0-85729-177-6
- Sara Saeedi Madani and Dariush Kiani, Binomial edge ideals of graphs, Electron. J. Combin. 19 (2012), no. 2, Paper 44, 6. MR 2946102, DOI 10.37236/2349
- Peter Schenzel and Sohail Zafar, Algebraic properties of the binomial edge ideal of a complete bipartite graph, An. Ştiinţ. Univ. “Ovidius” Constanţa Ser. Mat. 22 (2014), no. 2, 217–237. MR 3195706, DOI 10.2478/auom-2014-0043
Bibliographic Information
- Arvind Kumar
- Affiliation: Department of Mathematics, Indian Institute of Technology Madras, Chennai 600036, India
- Address at time of publication: Department of Mathematics, Chennai Mathematical Institute, Chennai 603103, India
- MR Author ID: 1328900
- ORCID: 0000-0002-2144-0588
- Email: arvkumar11@gmail.com
- Received by editor(s): January 20, 2020
- Received by editor(s) in revised form: January 20, 2020
- Published electronically: April 22, 2021
- Additional Notes: The author was supported by the National Board for Higher Mathematics, India
- Communicated by: Jerzy Weyman
- © Copyright 2021 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 149 (2021), 2727-2737
- MSC (2020): Primary 13D02, 13C13, 05E40
- DOI: https://doi.org/10.1090/proc/15434
- MathSciNet review: 4257788