A Bailey type identity with applications related to integer representations
HTML articles powered by AMS MathViewer
- by Mohamed El Bachraoui
- Proc. Amer. Math. Soc. 149 (2021), 3187-3200
- DOI: https://doi.org/10.1090/proc/15407
- Published electronically: May 10, 2021
- PDF | Request permission
Previous version: Original version posted May 10, 2021
Corrected version: This version corrects a publisher error in the communicating editor’s name.
Abstract:
In this paper we shall deduce a Bailey type formula as a consequence of the residual identity of a $q$-series transformation due to Gasper. Our formula leads to a variety of $q$-series identities which are related to the arithmetic function counting integer representations of the form \[ \frac {n(An+B)}{2}+\frac {r(Cr+D)}{2} + Enr. \]References
- George E. Andrews, On $q$-analogues of the Watson and Whipple summations, SIAM J. Math. Anal. 7 (1976), no. 3, 332–336. MR 399529, DOI 10.1137/0507026
- George E. Andrews, Ramanujan’s “lost” notebook. I. Partial $\theta$-functions, Adv. in Math. 41 (1981), no. 2, 137–172. MR 625891, DOI 10.1016/0001-8708(81)90013-X
- George E. Andrews, Multiple series Rogers-Ramanujan type identities, Pacific J. Math. 114 (1984), no. 2, 267–283. MR 757501, DOI 10.2140/pjm.1984.114.267
- George E. Andrews, $q$-series: their development and application in analysis, number theory, combinatorics, physics, and computer algebra, CBMS Regional Conference Series in Mathematics, vol. 66, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1986. MR 858826, DOI 10.1090/cbms/066
- George E. Andrews, The fifth and seventh order mock theta functions, Trans. Amer. Math. Soc. 293 (1986), no. 1, 113–134. MR 814916, DOI 10.1090/S0002-9947-1986-0814916-2
- George E. Andrews, The theory of partitions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1998. Reprint of the 1976 original. MR 1634067
- George E. Andrews, Umbral calculus, Bailey chains, and pentagonal number theorems, J. Combin. Theory Ser. A 91 (2000), no. 1-2, 464–475. In memory of Gian-Carlo Rota. MR 1780034, DOI 10.1006/jcta.2000.3111
- George E. Andrews and Bruce C. Berndt, Ramanujan’s lost notebook. Part V, Springer, Cham, 2018. MR 3838409, DOI 10.1007/978-3-319-77834-1
- George E. Andrews and Dean Hickerson, Ramanujan’s “lost” notebook. VII. The sixth order mock theta functions, Adv. Math. 89 (1991), no. 1, 60–105. MR 1123099, DOI 10.1016/0001-8708(91)90083-J
- George E. Andrews and Mircea Merca, The truncated pentagonal number theorem, J. Combin. Theory Ser. A 119 (2012), no. 8, 1639–1643. MR 2946378, DOI 10.1016/j.jcta.2012.05.001
- George E. Andrews and Mircea Merca, Truncated theta series and a problem of Guo and Zeng, J. Combin. Theory Ser. A 154 (2018), 610–619. MR 3718080, DOI 10.1016/j.jcta.2017.10.003
- George E. Andrews and S. Ole Warnaar, The Bailey transform and false theta functions, Ramanujan J. 14 (2007), no. 1, 173–188. MR 2299047, DOI 10.1007/s11139-006-9006-4
- George E. Andrews and S. Ole Warnaar, The product of partial theta functions, Adv. in Appl. Math. 39 (2007), no. 1, 116–120. MR 2319567, DOI 10.1016/j.aam.2005.12.003
- M. El Bachraoui, Positive alternating sums of integer partitions, Ramanujan J. (2020), DOI 10.1007/s11139-020-00264-z.
- W. N. Bailey, Identities of the Rogers-Ramanujan type, Proc. London Math. Soc. (2) 50 (1948), 1–10. MR 25025, DOI 10.1112/plms/s2-50.1.1
- Bruce C. Berndt, Number theory in the spirit of Ramanujan, Student Mathematical Library, vol. 34, American Mathematical Society, Providence, RI, 2006. MR 2246314, DOI 10.1090/stml/034
- George E. Andrews and Bruce C. Berndt, Ramanujan’s lost notebook. Part II, Springer, New York, 2009. MR 2474043
- Nathan J. Fine, Basic hypergeometric series and applications, Mathematical Surveys and Monographs, vol. 27, American Mathematical Society, Providence, RI, 1988. With a foreword by George E. Andrews. MR 956465, DOI 10.1090/surv/027
- Kristina Garrett, Mourad E. H. Ismail, and Dennis Stanton, Variants of the Rogers-Ramanujan identities, Adv. in Appl. Math. 23 (1999), no. 3, 274–299. MR 1722235, DOI 10.1006/aama.1999.0658
- George Gasper, Summation, transformation, and expansion formulas for bibasic series, Trans. Amer. Math. Soc. 312 (1989), no. 1, 257–277. MR 953537, DOI 10.1090/S0002-9947-1989-0953537-0
- George Gasper and Mizan Rahman, Basic hypergeometric series, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 96, Cambridge University Press, Cambridge, 2004. With a foreword by Richard Askey. MR 2128719, DOI 10.1017/CBO9780511526251
- Victor J. W. Guo and Jiang Zeng, Two truncated identities of Gauss, J. Combin. Theory Ser. A 120 (2013), no. 3, 700–707. MR 3007145, DOI 10.1016/j.jcta.2012.12.004
- G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 6th ed., Oxford University Press, Oxford, 2008. Revised by D. R. Heath-Brown and J. H. Silverman; With a foreword by Andrew Wiles. MR 2445243
- Byungchan Kim and Jeremy Lovejoy, Ramanujan-type partial theta identities and conjugate Bailey pairs, II. Multisums, Ramanujan J. 46 (2018), no. 3, 743–764. MR 3826753, DOI 10.1007/s11139-017-9919-0
- Zhi-Guo Liu, On the $q$-derivative and $q$-series expansions, Int. J. Number Theory 9 (2013), no. 8, 2069–2089. MR 3145161, DOI 10.1142/S1793042113500759
- Jeremy Lovejoy, Ramanujan-type partial theta identities and conjugate Bailey pairs, Ramanujan J. 29 (2012), no. 1-3, 51–67. MR 2994089, DOI 10.1007/s11139-011-9356-4
- Renrong Mao, Proofs of two conjectures on truncated series, J. Combin. Theory Ser. A 130 (2015), 15–25. MR 3280682, DOI 10.1016/j.jcta.2014.10.004
- Mircea Merca, Fast algorithm for generating ascending compositions, J. Math. Model. Algorithms 11 (2012), no. 1, 89–104. MR 2910461, DOI 10.1007/s10852-011-9168-y
- Srinivasa Ramanujan, The lost notebook and other unpublished papers, Springer-Verlag, Berlin; Narosa Publishing House, New Delhi, 1988. With an introduction by George E. Andrews. MR 947735
- L. J. Rogers, On two theorems of combinatory analysis and some allied identities, Proc. London Math. Soc. (2) 16 (1917), 315–336.
- L. J. Slater, A new proof of Rogers’s transformations of infinite series, Proc. London Math. Soc. (2) 53 (1951), 460–475. MR 43235, DOI 10.1112/plms/s2-53.6.460
- L. J. Slater, Further identities of the Rogers-Ramanujan type, Proc. London Math. Soc. (2) 54 (1952), 147–167. MR 49225, DOI 10.1112/plms/s2-54.2.147
- N.J.A. Sloane, On-line encyclopedia of integer sequences, http://oeis.org/.
- Liuquan Wang, New proofs of Ramanujan’s identities on false theta functions, Ramanujan J. 50 (2019), no. 2, 423–431. MR 4022238, DOI 10.1007/s11139-018-0048-1
- Liuquan Wang and Ae Ja Yee, Some Hecke-Rogers type identities, Adv. Math. 349 (2019), 733–748. MR 3942712, DOI 10.1016/j.aim.2019.04.015
- S. Ole Warnaar, Partial theta functions. I. Beyond the lost notebook, Proc. London Math. Soc. (3) 87 (2003), no. 2, 363–395. MR 1990932, DOI 10.1112/S002461150201403X
- Ae Ja Yee, A truncated Jacobi triple product theorem, J. Combin. Theory Ser. A 130 (2015), 1–14. MR 3280681, DOI 10.1016/j.jcta.2014.10.005
Bibliographic Information
- Mohamed El Bachraoui
- Affiliation: Department of Mathematical Sciences, United Arab Emirates University, PO Box 15551, Al-Ain, United Arab Emirates
- MR Author ID: 708599
- Email: melbachraoui@uaeu.ac.ae
- Received by editor(s): May 10, 2020
- Received by editor(s) in revised form: November 3, 2020
- Published electronically: May 10, 2021
- Communicated by: Mourad Ismail
- © Copyright 2021 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 149 (2021), 3187-3200
- MSC (2020): Primary 11P81, 05A17
- DOI: https://doi.org/10.1090/proc/15407
- MathSciNet review: 4273127