On the geometry of Banach spaces of the form $\mathrm {Lip}_0(C(K))$
HTML articles powered by AMS MathViewer
- by Leandro Candido and Pedro L. Kaufmann
- Proc. Amer. Math. Soc. 149 (2021), 3335-3345
- DOI: https://doi.org/10.1090/proc/15420
- Published electronically: May 13, 2021
- PDF | Request permission
Abstract:
We investigate the problem of classifying the Banach spaces $\mathrm {Lip}_0(C(K))$ for Hausdorff compacta $K$. In particular, sufficient conditions are established for a space $\mathrm {Lip}_0(C(K))$ to be isomorphic to $\mathrm {Lip}_0(c_0(\varGamma ))$ for some uncountable set $\varGamma$.References
- Israel Aharoni and Joram Lindenstrauss, Uniform equivalence between Banach spaces, Bull. Amer. Math. Soc. 84 (1978), no. 2, 281–283. MR 482074, DOI 10.1090/S0002-9904-1978-14475-9
- Antonio Avilés and Piotr Koszmider, A continuous image of a Radon-Nikodým compact space which is not Radon-Nikodým, Duke Math. J. 162 (2013), no. 12, 2285–2299. MR 3102480, DOI 10.1215/00127094-2348447
- Yoav Benyamini and Joram Lindenstrauss, Geometric nonlinear functional analysis. Vol. 1, American Mathematical Society Colloquium Publications, vol. 48, American Mathematical Society, Providence, RI, 2000. MR 1727673, DOI 10.1090/coll/048
- Y. Benyamini, M. E. Rudin, and M. Wage, Continuous images of weakly compact subsets of Banach spaces, Pacific J. Math. 70 (1977), no. 2, 309–324. MR 625889, DOI 10.2140/pjm.1977.70.309
- Leandro Candido, Marek Cúth, and Michal Doucha, Isomorphisms between spaces of Lipschitz functions, J. Funct. Anal. 277 (2019), no. 8, 2697–2727. MR 3990732, DOI 10.1016/j.jfa.2019.02.003
- Yves Dutrieux and Valentin Ferenczi, The Lipschitz free Banach spaces of $C(K)$-spaces, Proc. Amer. Math. Soc. 134 (2006), no. 4, 1039–1044. MR 2196036, DOI 10.1090/S0002-9939-05-08301-2
- Marián Fabian, Petr Habala, Petr Hájek, Vicente Montesinos Santalucía, Jan Pelant, and Václav Zizler, Functional analysis and infinite-dimensional geometry, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, vol. 8, Springer-Verlag, New York, 2001. MR 1831176, DOI 10.1007/978-1-4757-3480-5
- Gilles Godefroy, A survey on Lipschitz-free Banach spaces, Comment. Math. 55 (2015), no. 2, 89–118. MR 3518958, DOI 10.14708/cm.v55i2.1104
- G. Godefroy and N. J. Kalton, Lipschitz-free Banach spaces, Studia Math. 159 (2003), no. 1, 121–141. Dedicated to Professor Aleksander Pełczyński on the occasion of his 70th birthday. MR 2030906, DOI 10.4064/sm159-1-6
- Antonio J. Guirao, Vicente Montesinos, and Václav Zizler, Open problems in the geometry and analysis of Banach spaces, Springer, [Cham], 2016. MR 3524558, DOI 10.1007/978-3-319-33572-8
- Petr Hájek, Vicente Montesinos Santalucía, Jon Vanderwerff, and Václav Zizler, Biorthogonal systems in Banach spaces, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, vol. 26, Springer, New York, 2008. MR 2359536
- Petr Hájek and Matěj Novotný, Some remarks on the structure of Lipschitz-free spaces, Bull. Belg. Math. Soc. Simon Stevin 24 (2017), no. 2, 283–304. MR 3694004, DOI 10.36045/bbms/1503453711
- F. Hernández-Hernández and M. Hrušák, Topology of Mrówka-Isbell spaces, Pseudocompact topological spaces, Dev. Math., vol. 55, Springer, Cham, 2018, pp. 253–289. MR 3822423
- Neil Hindman and Dona Strauss, Algebra in the Stone-Čech compactification, De Gruyter Expositions in Mathematics, vol. 27, Walter de Gruyter & Co., Berlin, 1998. Theory and applications. MR 1642231, DOI 10.1515/9783110809220
- W. B. Johnson, J. Lindenstrauss, and G. Schechtman, Banach spaces determined by their uniform structures, Geom. Funct. Anal. 6 (1996), no. 3, 430–470. MR 1392325, DOI 10.1007/BF02249259
- P. L. Kaufmann, Products of lipschitz-free spaces and applications, (2014). Avaiable at arXiv:1403.6605.
- P. L. Kaufmann, Products of Lipschitz-free spaces and applications, Studia Math., 226 (2015), pp. 213–227.
- Piotr Koszmider, Banach spaces of continuous functions with few operators, Math. Ann. 330 (2004), no. 1, 151–183. MR 2091683, DOI 10.1007/s00208-004-0544-z
- Wiesław Kubiś, Banach spaces with projectional skeletons, J. Math. Anal. Appl. 350 (2009), no. 2, 758–776. MR 2474810, DOI 10.1016/j.jmaa.2008.07.006
- Assaf Naor and Gideon Schechtman, Planar earthmover is not in $L_1$, SIAM J. Comput. 37 (2007), no. 3, 804–826. MR 2341917, DOI 10.1137/05064206X
- Zbigniew Semadeni, Banach spaces of continuous functions. Vol. I, Monografie Matematyczne, Tom 55, PWN—Polish Scientific Publishers, Warsaw, 1971. MR 0296671
- Nik Weaver, Lipschitz algebras, World Scientific Publishing Co., Inc., River Edge, NJ, 1999. MR 1832645, DOI 10.1142/4100
Bibliographic Information
- Leandro Candido
- Affiliation: Departamento de Matemática, Universidade Federal de São Paulo – UNIFESP, Instituto de Ciência e Tecnologia, São José dos Campos - SP, Brazil
- MR Author ID: 988174
- ORCID: 0000-0002-6429-3899
- Email: leandro.candido@unifesp.br
- Pedro L. Kaufmann
- Affiliation: Departamento de Matemática, Universidade Federal de São Paulo – UNIFESP, Instituto de Ciência e Tecnologi, São José dos Campos - SP, Brazil
- MR Author ID: 998841
- ORCID: 0000-0001-6175-7144
- Email: plkaufmann@unifesp.br
- Received by editor(s): October 26, 2020
- Received by editor(s) in revised form: November 4, 2020, and November 6, 2020
- Published electronically: May 13, 2021
- Additional Notes: Both authors were supported by grant 2016/25574-8, São Paulo Research Foundation (FAPESP). P. L. Kaufmann was supported additionally by grant 2017/18623-5, FAPESP
- Communicated by: Stephen Dilworth
- © Copyright 2021 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 149 (2021), 3335-3345
- MSC (2020): Primary 46E15, 46B03; Secondary 46B26
- DOI: https://doi.org/10.1090/proc/15420
- MathSciNet review: 4273138