Linear mappings preserving the copositive cone
HTML articles powered by AMS MathViewer
- by Yaroslav Shitov
- Proc. Amer. Math. Soc. 149 (2021), 3173-3176
- DOI: https://doi.org/10.1090/proc/15432
- Published electronically: May 11, 2021
- PDF | Request permission
Abstract:
Let $\mathcal {S}_n$ be the set of all $n$-by-$n$ symmetric real matrices, and let $\mathcal {C}_n$ be the copositive cone, that is, the set of all matrices $a\in \mathcal {S}_n$ that fulfill the condition $u^\top a u\geqslant 0$ for all $n$-vectors $u$ with nonnegative entries. We prove that a linear mapping $\varphi :\mathcal {S}_n\to \mathcal {S}_n$ satisfies $\varphi (\mathcal {C}_n)=\mathcal {C}_n$ if and only if \begin{equation*} \varphi (x)=m^\top xm \end{equation*} for a fixed monomial matrix $m$ with nonnegative entries.References
- Abraham Berman, Mirjam Dür, and Naomi Shaked-Monderer, Open problems in the theory of completely positive and copositive matrices, Electron. J. Linear Algebra 29 (2015), 46–58. MR 3414584, DOI 10.13001/1081-3810.2943
- Peter J. C. Dickinson and Luuk Gijben, On the computational complexity of membership problems for the completely positive cone and its dual, Comput. Optim. Appl. 57 (2014), no. 2, 403–415. MR 3165055, DOI 10.1007/s10589-013-9594-z
- G. Frobenius, Über die Darstellung der endlichen Gruppen durch lineare Substitutionen, Sitzungsber. Deutsch. Akad. Wiss. Berlin (1897) 994–1015.
- S. Furtado, C. R. Johnson, and Y. Zhang, Linear preservers of copositive matrices, Linear Multilinear A. (2019) doi.org/10.1080/03081087.2019.1692775.
- Alexander Guterman, Chi-Kwong Li, and Peter emrl, Some general techniques on linear preserver problems, Linear Algebra Appl. 315 (2000), no. 1-3, 61–81. MR 1774960, DOI 10.1016/S0024-3795(00)00119-1
- Marshall Hall Jr., Combinatorial theory, Blaisdell Publishing Co. [Ginn and Co.], Waltham, Mass.-Toronto, Ont.-London, 1967. MR 0224481
- J.-B. Hiriart-Urruty and A. Seeger, A variational approach to copositive matrices, SIAM Rev. 52 (2010), no. 4, 593–629. MR 2736966, DOI 10.1137/090750391
- Chi-Kwong Li and Stephen Pierce, Linear preserver problems, Amer. Math. Monthly 108 (2001), no. 7, 591–605. MR 1862098, DOI 10.2307/2695268
- Chi-Kwong Li and Nam-Kiu Tsing, Linear preserver problems: a brief introduction and some special techniques, Linear Algebra Appl. 162/164 (1992), 217–235. Directions in matrix theory (Auburn, AL, 1990). MR 1148401, DOI 10.1016/0024-3795(92)90377-M
- John E. Maxfield and Henryk Minc, On the matrix equation $X^{\prime } X=A$, Proc. Edinburgh Math. Soc. (2) 13 (1962/63), 125–129. MR 174570, DOI 10.1017/S0013091500014681
- Hannu Väliaho, Criteria for copositive matrices, Linear Algebra Appl. 81 (1986), 19–34. MR 852891, DOI 10.1016/0024-3795(86)90246-6
Bibliographic Information
- Yaroslav Shitov
- Affiliation: kvartira 4, dom 65, Izumrudnaya ulitsa, Moscow 129346, Russia
- MR Author ID: 864960
- Email: yaroslav-shitov@yandex.ru
- Received by editor(s): November 26, 2019
- Received by editor(s) in revised form: August 28, 2020, and October 15, 2020
- Published electronically: May 11, 2021
- Communicated by: Matthew A. Papanikolas
- © Copyright 2021 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 149 (2021), 3173-3176
- MSC (2020): Primary 15A86, 15B48
- DOI: https://doi.org/10.1090/proc/15432
- MathSciNet review: 4273125