On the spatially asymptotic structure of time-periodic solutions to the Navier–Stokes equations
HTML articles powered by AMS MathViewer
- by Thomas Eiter
- Proc. Amer. Math. Soc. 149 (2021), 3439-3451
- DOI: https://doi.org/10.1090/proc/15482
- Published electronically: May 12, 2021
- PDF | Request permission
Abstract:
The asymptotic behavior of weak time-periodic solutions to the Navier–Stokes equations with a drift term in the three-dimensional whole space is investigated. The velocity field is decomposed into a time-independent and a remaining part, and separate asymptotic expansions are derived for both parts and their gradients. One observes that the behavior at spatial infinity is determined by the corresponding Oseen fundamental solutions.References
- K. I. Babenko, The stationary solutions of the problem of the flow around a body by a viscous incompressible fluid, Mat. Sb. (N.S.) 91(133) (1973), 3–26, 143 (Russian). MR 0348301
- François Bruhat, Distributions sur un groupe localement compact et applications à l’étude des représentations des groupes $\wp$-adiques, Bull. Soc. Math. France 89 (1961), 43–75 (French). MR 140941, DOI 10.24033/bsmf.1559
- T. Eiter, Existence and Spatial Decay of Periodic Navier-Stokes Flows in Exterior Domains, Logos Verlag Berlin, 2020.
- T. Eiter and G. P. Galdi, Spatial decay of the vorticity field of time-periodic viscous flow past a body, arXiv:2011.12579, 2020.
- T. Eiter and M. Kyed, Time-periodic linearized Navier-Stokes equations: an approach based on Fourier multipliers, Particles in flows, Adv. Math. Fluid Mech., Birkhäuser/Springer, Cham, 2017, pp. 77–137. MR 3727766
- Thomas Eiter and Mads Kyed, Estimates of time-periodic fundamental solutions to the linearized Navier-Stokes equations, J. Math. Fluid Mech. 20 (2018), no. 2, 517–529. MR 3808582, DOI 10.1007/s00021-017-0332-7
- R. Farwig, Das stationäre Außenraumproblem der Navier-Stokes-Gleichungen bei nichtverschwindender Anströmgeschwindigkeit in anisotrop gewichteten Sobolevräumen, SFB 256 preprint no. 110 (Habilitationsschrift). University of Bonn (1990).
- Reinhard Farwig, The stationary exterior $3$D-problem of Oseen and Navier-Stokes equations in anisotropically weighted Sobolev spaces, Math. Z. 211 (1992), no. 3, 409–447. MR 1190220, DOI 10.1007/BF02571437
- Robert Finn, An energy theorem for viscous fluid motions, Arch. Rational Mech. Anal. 6 (1960), 371–381. MR 166497, DOI 10.1007/BF00276169
- Robert Finn, Estimates at infinity for stationary solutions of the Navier-Stokes equations, Bull. Math. Soc. Sci. Math. Phys. R. P. Roumaine (N.S.) 3(51) (1959), 387–418. MR 166495
- Robert Finn, On the exterior stationary problem for the Navier-Stokes equations, and associated perturbation problems, Arch. Rational Mech. Anal. 19 (1965), 363–406. MR 182816, DOI 10.1007/BF00253485
- Giovanni Galdi and Hermann Sohr, Existence and uniqueness of time-periodic physically reasonable Navier-Stokes flow past a body, Arch. Ration. Mech. Anal. 172 (2004), no. 3, 363–406. MR 2062429, DOI 10.1007/s00205-004-0306-9
- G. P. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations, 2nd ed., Springer Monographs in Mathematics, Springer, New York, 2011. Steady-state problems. MR 2808162, DOI 10.1007/978-0-387-09620-9
- Giovanni P. Galdi and Mads Kyed, Time-periodic solutions to the Navier-Stokes equations in the three-dimensional whole-space with a non-zero drift term: asymptotic profile at spatial infinity, Mathematical analysis in fluid mechanics—selected recent results, Contemp. Math., vol. 710, Amer. Math. Soc., [Providence], RI, [2018] ©2018, pp. 121–144. MR 3818671, DOI 10.1090/conm/710/14367
- Loukas Grafakos, Classical Fourier analysis, 2nd ed., Graduate Texts in Mathematics, vol. 249, Springer, New York, 2008. MR 2445437, DOI 10.1007/978-0-387-09432-8
- Stanislav Kračmar, Antonín Novotný, and Milan Pokorný, Estimates of Oseen kernels in weighted $L^p$ spaces, J. Math. Soc. Japan 53 (2001), no. 1, 59–111. MR 1800524, DOI 10.2969/jmsj/05310059
- M. Kyed, Time-Periodic Solutions to the Navier-Stokes Equations, Habilitationsschrift, Technische Universität Darmstadt, 2012.
Bibliographic Information
- Thomas Eiter
- Affiliation: Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstraße 39, 10117 Berlin, Germany
- Email: thomas.eiter@wias-berlin.de
- Received by editor(s): May 27, 2020
- Received by editor(s) in revised form: December 8, 2020
- Published electronically: May 12, 2021
- Communicated by: Catherine Sulem
- © Copyright 2021 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 149 (2021), 3439-3451
- MSC (2020): Primary 35Q30, 35B10, 35C20, 76D05, 35E05
- DOI: https://doi.org/10.1090/proc/15482
- MathSciNet review: 4273147