Pullbacks of $\kappa$ classes on $\overline {\mathcal {M}}_{0,n}$
HTML articles powered by AMS MathViewer
- by Rohini Ramadas
- Proc. Amer. Math. Soc. 149 (2021), 3245-3260
- DOI: https://doi.org/10.1090/proc/15486
- Published electronically: May 13, 2021
- PDF | Request permission
Abstract:
The moduli space $\overline {\mathcal {M}}_{0,n}$ carries a codimension-$d$ Chow class $\kappa _{d}$. We consider the subspace $\mathcal {K}^{d}_{n}$ of $A^d(\overline {\mathcal {M}}_{0,n},\mathbb {Q})$ spanned by pullbacks of $\kappa _d$ via forgetful maps. We find a permutation basis for $\mathcal {K}^{d}_{n}$, and describe its annihilator under the intersection pairing in terms of $d$-dimensional boundary strata. As an application, we give a new permutation basis of the divisor class group of $\overline {\mathcal {M}}_{0,n}$.References
- Enrico Arbarello and Maurizio Cornalba, Combinatorial and algebro-geometric cohomology classes on the moduli spaces of curves, J. Algebraic Geom. 5 (1996), no. 4, 705–749. MR 1486986
- Enrico Arbarello and Maurizio Cornalba, Calculating cohomology groups of moduli spaces of curves via algebraic geometry, Publications Mathématiques de l’Institut des Hautes Études Scientifiques 88 (1998), no. 1, 97–127.
- Jonas Bergström and Satoshi Minabe, On the cohomology of moduli spaces of (weighted) stable rational curves, Math. Z. 275 (2013), no. 3-4, 1095–1108. MR 3127048, DOI 10.1007/s00209-013-1171-8
- Ana-Maria Castravet and Jenia Tevelev, Derived category of moduli of pointed curves – II, ArXiv e-prints (2020), arXiv:2002.02889.
- Renzo Cavalieri and Stephanie Yang, Tautological pairings on moduli spaces of curves, Proc. Amer. Math. Soc. 139 (2011), no. 1, 51–62. MR 2729070, DOI 10.1090/S0002-9939-2010-10619-6
- David Mumford, Towards an enumerative geometry of the moduli space of curves, Arithmetic and geometry, Vol. II, Progr. Math., vol. 36, Birkhäuser Boston, Boston, MA, 1983, pp. 271–328. MR 717614
- Carel Faber, Algorithms for computing intersection numbers on moduli spaces of curves, with an application to the class of the locus of Jacobians, New trends in algebraic geometry (Warwick, 1996) London Math. Soc. Lecture Note Ser., vol. 264, Cambridge Univ. Press, Cambridge, 1999, pp. 93–109. MR 1714822, DOI 10.1017/CBO9780511721540.006
- Gavril Farkas and Angela Gibney, The Mori cones of moduli spaces of pointed curves of small genus, Trans. Amer. Math. Soc. 355 (2003), no. 3, 1183–1199. MR 1938752, DOI 10.1090/S0002-9947-02-03165-3
- E. Getzler, Operads and moduli spaces of genus $0$ Riemann surfaces, The moduli space of curves (Texel Island, 1994) Progr. Math., vol. 129, Birkhäuser Boston, Boston, MA, 1995, pp. 199–230. MR 1363058, DOI 10.1007/978-1-4612-4264-2_{8}
- Eleny-Nicoleta Ionel, Relations in the tautological ring of $\scr M_g$, Duke Math. J. 129 (2005), no. 1, 157–186. MR 2155060, DOI 10.1215/S0012-7094-04-12916-1
- Sean Keel, Intersection theory of moduli space of stable $n$-pointed curves of genus zero, Trans. Amer. Math. Soc. 330 (1992), no. 2, 545–574. MR 1034665, DOI 10.1090/S0002-9947-1992-1034665-0
- M. Kontsevich and Yu. Manin, Gromov-Witten classes, quantum cohomology, and enumerative geometry, Comm. Math. Phys. 164 (1994), no. 3, 525–562. MR 1291244, DOI 10.1007/BF02101490
- Finn F. Knudsen, The projectivity of the moduli space of stable curves. II. The stacks $M_{g,n}$, Math. Scand. 52 (1983), no. 2, 161–199. MR 702953, DOI 10.7146/math.scand.a-12001
- Sarah Koch, Teichmüller theory and critically finite endomorphisms, Adv. Math. 248 (2013), 573–617. MR 3107522, DOI 10.1016/j.aim.2013.08.019
- Rahul Pandharipande, The kappa classes on the moduli spaces of curves, ArXiv e-prints (2011), arXiv:1108.5984.
- Rahul Pandharipande, The $\varkappa$ ring of the moduli of curves of compact type, Acta Math. 208 (2012), no. 2, 335–388. MR 2931383, DOI 10.1007/s11511-012-0078-2
- Rahul Pandharipande, A calculus for the moduli space of curves, Algebraic geometry: Salt Lake City 2015, Proc. Sympos. Pure Math., vol. 97, Amer. Math. Soc., Providence, RI, 2018, pp. 459–487. MR 3821159, DOI 10.1090/pspum/097.1/01682
- R. Pandharipande and A. Pixton, Relations in the tautological ring of the moduli space of curves, Mumford’s 80th birthday volume, to appear.
- R. Pandharipande, A. Pixton, and D. Zvonkine, Tautological relations via $r$-spin structures, J. Algebraic Geom. 28 (2019), no. 3, 439–496. With an appendix by F. Janda and the authors. MR 3959068, DOI 10.1090/jag/736
- Rohini Ramadas, Dynamics on the Moduli Space of Pointed Rational Curves, ProQuest LLC, Ann Arbor, MI, 2017. Thesis (Ph.D.)–University of Michigan. MR 3768549
- Rohini Ramadas, Hurwitz correspondences on compactifications of $\mathcal M_{0,N}$, Adv. Math. 323 (2018), 622–667. MR 3725886, DOI 10.1016/j.aim.2017.10.044
- Rohini Ramadas, Algebraic stability of meromorphic maps descended from Thurston’s pullback map, Transactions of the AMS; to appear (2019), arXiv:1904.08000.
- Rohini Ramadas, Dynamical degrees of Hurwitz correspondences, Ergodic Theory Dynam. Systems 40 (2020), no. 7, 1968–1990. MR 4108910, DOI 10.1017/etds.2018.125
- Rohini Ramadas and Rob Silversmith, Two-dimensional cycle classes on $\overline {\mathcal {M}}_{0,n}$, ArXiv e-prints (2020), arXiv:2004.05491.
Bibliographic Information
- Rohini Ramadas
- Affiliation: Department of Mathematics, Brown University, Providence, Rhode Island
- MR Author ID: 1242284
- ORCID: 0000-0001-5974-7115
- Email: rohini_ramadas@brown.edu
- Received by editor(s): July 13, 2020
- Received by editor(s) in revised form: December 18, 2020
- Published electronically: May 13, 2021
- Additional Notes: This work was partially supported by NSF grants 0943832, 1045119, 1068190, and 1703308.
- Communicated by: Rachel Pries
- © Copyright 2021 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 149 (2021), 3245-3260
- MSC (2020): Primary 14H10; Secondary 14N99, 14M99, 20C30
- DOI: https://doi.org/10.1090/proc/15486
- MathSciNet review: 4273132