Intersections and unions of a general family of function spaces
HTML articles powered by AMS MathViewer
- by Guanlong Bao, Hasi Wulan and Fangqin Ye
- Proc. Amer. Math. Soc. 149 (2021), 3307-3315
- DOI: https://doi.org/10.1090/proc/15491
- Published electronically: May 10, 2021
- PDF | Request permission
Abstract:
In this paper, we investigate the strict inclusion relation associated with intersections and unions of a general family of function spaces. We answer partially a question left open in Korhonen and Rättyä [Comput. Methods Funct. Theory 5 (2005), pp. 459–469].References
- Rauno Aulaskari, Jie Xiao, and Ru Han Zhao, On subspaces and subsets of BMOA and UBC, Analysis 15 (1995), no. 2, 101–121. MR 1344246, DOI 10.1524/anly.1995.15.2.101
- Guanlong Bao and Jordi Pau, Boundary multipliers of a family of Möbius invariant function spaces, Ann. Acad. Sci. Fenn. Math. 41 (2016), no. 1, 199–220. MR 3467705, DOI 10.5186/aasfm.2016.4113
- Matts Essén, Hasi Wulan, and Jie Xiao, Several function-theoretic characterizations of Möbius invariant $\scr Q_K$ spaces, J. Funct. Anal. 230 (2006), no. 1, 78–115. MR 2184185, DOI 10.1016/j.jfa.2005.07.004
- Janne Heittokangas, Risto Korhonen, and Jouni Rättyä, Linear differential equations with coefficients in weighted Bergman and Hardy spaces, Trans. Amer. Math. Soc. 360 (2008), no. 2, 1035–1055. MR 2346482, DOI 10.1090/S0002-9947-07-04335-8
- Risto Korhonen and Jouni Rättyä, Intersections and unions of weighted Bergman spaces, Comput. Methods Funct. Theory 5 (2005), no. 2, 459–469. MR 2205426, DOI 10.1007/BF03321110
- Risto Korhonen and Jouni Rättyä, Finite order solutions of linear differential equations in the unit disc, J. Math. Anal. Appl. 349 (2009), no. 1, 43–54. MR 2455729, DOI 10.1016/j.jmaa.2008.08.012
- Jordi Pau and José Ángel Peláez, On the zeros of functions in Dirichlet-type spaces, Trans. Amer. Math. Soc. 363 (2011), no. 4, 1981–2002. MR 2746672, DOI 10.1090/S0002-9947-2010-05108-6
- Fernando Pérez-González and Jouni Rättyä, Inner functions in the Möbius invariant Besov-type spaces, Proc. Edinb. Math. Soc. (2) 52 (2009), no. 3, 751–770. MR 2546643, DOI 10.1017/S0013091507000818
- Jouni Rättyä, On some complex function spaces and classes, Ann. Acad. Sci. Fenn. Math. Diss. 124 (2001), 73. MR 1866201
- Hasi Wulan and Kehe Zhu, Möbius invariant $\mathcal Q_K$ spaces, Springer, Cham, 2017. MR 3585607, DOI 10.1007/978-3-319-58287-0
- Jie Xiao, Holomorphic $Q$ classes, Lecture Notes in Mathematics, vol. 1767, Springer-Verlag, Berlin, 2001. MR 1869752, DOI 10.1007/b87877
- J. Xiao, Geometric $\mathcal {Q}_p$ functions, Birkhäuser Verlag, Basel-Boston-Berlin, 2006.
- F. Ye, Solutions of second order complex differential equation having certain pre-given zeros, Comput. Methods Funct. Theory, doi: 10.1007/s40315-020-00318-9, (2020).
- Ruhan Zhao, On a general family of function spaces, Ann. Acad. Sci. Fenn. Math. Diss. 105 (1996), 56. MR 1395906
Bibliographic Information
- Guanlong Bao
- Affiliation: Department of Mathematics, Shantou University, Shantou 515063, Guangdong, People’s Republic of China
- MR Author ID: 1034887
- Email: glbao@stu.edu.cn
- Hasi Wulan
- Affiliation: Department of Mathematics, Shantou University, Shantou 515063, Guangdong, People’s Republic of China
- ORCID: 0000-0001-6771-7311
- Email: wulan@stu.edu.cn
- Fangqin Ye
- Affiliation: Business School, Shantou University, Shantou 515063, Guangdong, People’s Republic of China
- Email: fqye@stu.edu.cn
- Received by editor(s): October 2, 2020
- Published electronically: May 10, 2021
- Additional Notes: The work was supported by NNSF of China (No. 12001352, No. 11801347 and No. 11720101003), NSF of Guangdong Province (No. 2018A030313512), Guangdong basic and applied basic research foundation (No. 2019A1515110178), Key projects of fundamental research in universities of Guangdong Province (No. 2018KZDXM034) and Shantou University SRFT (No. NTF17020 and No. STF17005).
The first author is the corresponding author. - Communicated by: Adrian Ioana
- © Copyright 2021 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 149 (2021), 3307-3315
- MSC (2020): Primary 30H25, 30J10, 46E15
- DOI: https://doi.org/10.1090/proc/15491
- MathSciNet review: 4273136