Torsion of elliptic curves with rational $j$-invariant defined over number fields of prime degree
HTML articles powered by AMS MathViewer
- by Tomislav Gužvić
- Proc. Amer. Math. Soc. 149 (2021), 3261-3275
- DOI: https://doi.org/10.1090/proc/15500
- Published electronically: May 18, 2021
- PDF | Request permission
Abstract:
Let $[K:\mathbb {Q}]=p$ be a prime number and let $E/K$ be an elliptic curve with $j(E) \in \mathbb {Q}$. We determine the all possibilities for $E(K)_{tors}$. We obtain these results by studying Galois representations of $E$ and of its quadratic twists.References
- Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235–265. Computational algebra and number theory (London, 1993). MR 1484478, DOI 10.1006/jsco.1996.0125
- Abbey Bourdon and Paul Pollack, Torsion subgroups of CM elliptic curves over odd degree number fields, Int. Math. Res. Not. IMRN 16 (2017), 4923–4961. MR 3687120, DOI 10.1093/imrn/rnw163
- Michael Chou, Torsion of rational elliptic curves over quartic Galois number fields, J. Number Theory 160 (2016), 603–628. MR 3425225, DOI 10.1016/j.jnt.2015.09.013
- Pete L. Clark, Patrick Corn, Alex Rice, and James Stankewicz, Computation on elliptic curves with complex multiplication, LMS J. Comput. Math. 17 (2014), no. 1, 509–535. MR 3356044, DOI 10.1112/S1461157014000072
- Harris B. Daniels and Enrique González-Jiménez, On the torsion of rational elliptic curves over sextic fields, Math. Comp. 89 (2020), no. 321, 411–435. MR 4011550, DOI 10.1090/mcom/3440
- Harris B. Daniels, Álvaro Lozano-Robledo, Filip Najman, and Andrew V. Sutherland, Torsion subgroups of rational elliptic curves over the compositum of all cubic fields, Math. Comp. 87 (2018), no. 309, 425–458. MR 3716201, DOI 10.1090/mcom/3213
- M. Derickx, A. Etropolski, M. V. Hoeij, J. S. Morrow, and D. Zureick-Brown, Sporadic cubic torsion, Algebra and Number Theory, accepted. arXiv:2007.13929.
- G. W. Fung, H. Ströher, H. C. Williams, and H. G. Zimmer, Torsion groups of elliptic curves with integral $j$-invariant over pure cubic fields, J. Number Theory 36 (1990), no. 1, 12–45. MR 1068671, DOI 10.1016/0022-314X(90)90003-A
- Enrique González-Jiménez, Complete classification of the torsion structures of rational elliptic curves over quintic number fields, J. Algebra 478 (2017), 484–505. MR 3621686, DOI 10.1016/j.jalgebra.2017.01.012
- Enrique González-Jiménez and Álvaro Lozano-Robledo, On the minimal degree of definition of $p$-primary torsion subgroups of elliptic curves, Math. Res. Lett. 24 (2017), no. 4, 1067–1096. MR 3723804, DOI 10.4310/MRL.2017.v24.n4.a7
- E. González-Jiménez and F. Najman, An algorithm for determining torsion growth of elliptic curves, preprint.
- Enrique González-Jiménez and Filip Najman, Growth of torsion groups of elliptic curves upon base change, Math. Comp. 89 (2020), no. 323, 1457–1485. MR 4063324, DOI 10.1090/mcom/3478
- Tomislav Gužvić, Torsion growth of rational elliptic curves in sextic number fields, J. Number Theory 220 (2021), 330–345. MR 4177547, DOI 10.1016/j.jnt.2020.09.010
- Juncheol Han, The general linear group over a ring, Bull. Korean Math. Soc. 43 (2006), no. 3, 619–626. MR 2264921, DOI 10.4134/BKMS.2006.43.3.619
- Daeyeol Jeon, Chang Heon Kim, and Euisung Park, On the torsion of elliptic curves over quartic number fields, J. London Math. Soc. (2) 74 (2006), no. 1, 1–12. MR 2254548, DOI 10.1112/S0024610706022940
- S. Kamienny, Torsion points on elliptic curves and $q$-coefficients of modular forms, Invent. Math. 109 (1992), no. 2, 221–229. MR 1172689, DOI 10.1007/BF01232025
- M. A. Kenku and F. Momose, Torsion points on elliptic curves defined over quadratic fields, Nagoya Math. J. 109 (1988), 125–149. MR 931956, DOI 10.1017/S0027763000002816
- M. A. Kenku, The modular curve $X_{0}(39)$ and rational isogeny, Math. Proc. Cambridge Philos. Soc. 85 (1979), no. 1, 21–23. MR 510395, DOI 10.1017/S0305004100055444
- M. A. Kenku, The modular curves $X_{0}(65)$ and $X_{0}(91)$ and rational isogeny, Math. Proc. Cambridge Philos. Soc. 87 (1980), no. 1, 15–20. MR 549292, DOI 10.1017/S0305004100056462
- M. A. Kenku, The modular curve $X_{0}(169)$ and rational isogeny, J. London Math. Soc. (2) 22 (1980), no. 2, 239–244. MR 588271, DOI 10.1112/jlms/s2-22.2.239
- M. A. Kenku, On the modular curves $X_{0}(125)$, $X_{1}(25)$ and $X_{1}(49)$, J. London Math. Soc. (2) 23 (1981), no. 3, 415–427. MR 616546, DOI 10.1112/jlms/s2-23.3.415
- LMFDB Collaboration, The L-functions and modular forms database, available at http://www.lmfdb.org, 2021.
- A. Lozano-Robledo, Galois representations attached to elliptic curves with complex multiplication, arXiv:1809.02584, 2019.
- Álvaro Lozano-Robledo, On the field of definition of $p$-torsion points on elliptic curves over the rationals, Math. Ann. 357 (2013), no. 1, 279–305. MR 3084348, DOI 10.1007/s00208-013-0906-5
- B. Mazur, Modular curves and the Eisenstein ideal, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 33–186 (1978). With an appendix by Mazur and M. Rapoport. MR 488287, DOI 10.1007/BF02684339
- B. Mazur, Rational isogenies of prime degree (with an appendix by D. Goldfeld), Invent. Math. 44 (1978), no. 2, 129–162. MR 482230, DOI 10.1007/BF01390348
- Loïc Merel, Bornes pour la torsion des courbes elliptiques sur les corps de nombres, Invent. Math. 124 (1996), no. 1-3, 437–449 (French). MR 1369424, DOI 10.1007/s002220050059
- Hans H. Müller, Harald Ströher, and Horst G. Zimmer, Torsion groups of elliptic curves with integral $j$-invariant over quadratic fields, J. Reine Angew. Math. 397 (1989), 100–161. MR 993219
- Jackson S. Morrow, Composite images of Galois for elliptic curves over $\mathbf {Q}$ and entanglement fields, Math. Comp. 88 (2019), no. 319, 2389–2421. MR 3957898, DOI 10.1090/mcom/3426
- Filip Najman, The number of twists with large torsion of an elliptic curve, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 109 (2015), no. 2, 535–547. MR 3383431, DOI 10.1007/s13398-014-0199-x
- Filip Najman, Torsion of rational elliptic curves over cubic fields and sporadic points on $X_1(n)$, Math. Res. Lett. 23 (2016), no. 1, 245–272. MR 3512885, DOI 10.4310/MRL.2016.v23.n1.a12
- Loren D. Olson, Points of finite order on elliptic curves with complex multiplication, Manuscripta Math. 14 (1974), 195–205. MR 352104, DOI 10.1007/BF01171442
- Attila Pethö, Thomas Weis, and Horst G. Zimmer, Torsion groups of elliptic curves with integral $j$-invariant over general cubic number fields, Internat. J. Algebra Comput. 7 (1997), no. 3, 353–413. MR 1448331, DOI 10.1142/S0218196797000174
- Oron Y. Propp, Cartan images and $\ell$-torsion points of elliptic curves with rational $j$-invariant, Res. Number Theory 4 (2018), no. 1, Paper No. 12, 23. MR 3766654, DOI 10.1007/s40993-018-0097-y
- Jeremy Rouse and David Zureick-Brown, Elliptic curves over $\Bbb Q$ and 2-adic images of Galois, Res. Number Theory 1 (2015), Paper No. 12, 34. MR 3500996, DOI 10.1007/s40993-015-0013-7
- Andrew V. Sutherland, Computing images of Galois representations attached to elliptic curves, Forum Math. Sigma 4 (2016), Paper No. e4, 79. MR 3482279, DOI 10.1017/fms.2015.33
- Lawrence C. Washington, Elliptic curves, Discrete Mathematics and its Applications (Boca Raton), Chapman & Hall/CRC, Boca Raton, FL, 2003. Number theory and cryptography. MR 1989729, DOI 10.4324/9780203484029
- D. Zywina, On the possible images of the mod $l$ representations associated to elliptic curves over $\mathbb {Q}$, arXiv:1508.07660, 2015.
Bibliographic Information
- Tomislav Gužvić
- Affiliation: Department of Mathematics, Faculty of Science, University of Zagreb, Bijenička cesta 30, 10000 Zagreb, Croatia
- Email: tguzvic@math.hr
- Received by editor(s): February 14, 2020
- Received by editor(s) in revised form: September 24, 2020, September 28, 2020, and December 22, 2020
- Published electronically: May 18, 2021
- Additional Notes: The author gratefully acknowledges support from the QuantiXLie Center of Excellence, a project co-financed by the Croatian Government and European Union through the European Regional Development Fund–the Competitiveness and Cohesion Operational Programme (Grant KK.01.1.1.01.0004) and by the Croatian Science Foundation under the project no. IP-2018-01-1313
- Communicated by: Amanda Folsom
- © Copyright 2021 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 149 (2021), 3261-3275
- MSC (2020): Primary 14H52, 11G05
- DOI: https://doi.org/10.1090/proc/15500
- MathSciNet review: 4273133