A note on point-finite coverings by balls
HTML articles powered by AMS MathViewer
- by Carlo Alberto De Bernardi
- Proc. Amer. Math. Soc. 149 (2021), 3417-3424
- DOI: https://doi.org/10.1090/proc/15510
- Published electronically: May 11, 2021
- PDF | Request permission
Abstract:
We provide an elementary proof of a result by V. P. Fonf and C. Zanco on point-finite coverings of separable Hilbert spaces. Indeed, by using a variation of the famous argument introduced by J. Lindenstrauss and R. R. Phelps [Israel J. Math. 6 (1968), pp. 39–48] to prove that the unit ball of a reflexive infinite-dimensional Banach space has uncountably many extreme points, we prove the following result.
Let $X$ be an infinite-dimensional Hilbert space satisfying $\mathrm {dens}(X)<2^{\aleph _0}$, then $X$ does not admit point-finite coverings by open or closed balls, each of positive radius.
In the second part of the paper, we follow the argument introduced by V. P. Fonf, M. Levin, and C. Zanco in [J. Geom. Anal. 24 (2014), pp. 1891–1897] to prove that the previous result holds also in infinite-dimensional Banach spaces that are both uniformly rotund and uniformly smooth.
References
- Dan Amir, Characterizations of inner product spaces, Operator Theory: Advances and Applications, vol. 20, Birkhäuser Verlag, Basel, 1986. MR 897527, DOI 10.1007/978-3-0348-5487-0
- H. H. Corson, Collections of convex sets which cover a Banach space, Fund. Math. 49 (1960/61), 143–145. MR 125430, DOI 10.4064/fm-49-2-143-145
- Carlo Alberto De Bernardi and Libor Veselý, Tilings of normed spaces, Canad. J. Math. 69 (2017), no. 2, 321–337. MR 3612088, DOI 10.4153/CJM-2015-057-3
- Carlo Alberto De Bernardi, Extreme points in polyhedral Banach spaces, Israel J. Math. 220 (2017), no. 2, 547–557. MR 3666436, DOI 10.1007/s11856-017-1539-2
- Carlo Alberto De Bernardi, Jacopo Somaglia, and Libor Veselý, Star-finite coverings of Banach spaces, J. Math. Anal. Appl. 491 (2020), no. 2, 124384, 21. MR 4126403, DOI 10.1016/j.jmaa.2020.124384
- V. P. Fonf, J. Lindenstrauss, and R. R. Phelps, Infinite dimensional convexity, Handbook of the geometry of Banach spaces, Vol. I, North-Holland, Amsterdam, 2001, pp. 599–670. MR 1863703, DOI 10.1016/S1874-5849(01)80017-6
- Vladimir P. Fonf, Michael Levin, and Clemente Zanco, Covering $L^p$ spaces by balls, J. Geom. Anal. 24 (2014), no. 4, 1891–1897. MR 3261723, DOI 10.1007/s12220-013-9400-2
- Vladimir P. Fonf and Libor Veselý, Infinite-dimensional polyhedrality, Canad. J. Math. 56 (2004), no. 3, 472–494. MR 2057283, DOI 10.4153/CJM-2004-022-7
- Vladimir P. Fonf and Clemente Zanco, Covering a Banach space, Proc. Amer. Math. Soc. 134 (2006), no. 9, 2607–2611. MR 2213739, DOI 10.1090/S0002-9939-06-08254-2
- Vladimir P. Fonf and Clemente Zanco, Covering the unit sphere of certain Banach spaces by sequences of slices and balls, Canad. Math. Bull. 57 (2014), no. 1, 42–50. MR 3150715, DOI 10.4153/CMB-2012-027-7
- Victor Klee, Dispersed Chebyshev sets and coverings by balls, Math. Ann. 257 (1981), no. 2, 251–260. MR 634466, DOI 10.1007/BF01458288
- Joram Lindenstrauss and R. R. Phelps, Extreme point properties of convex bodies in reflexive Banach spaces, Israel J. Math. 6 (1968), 39–48. MR 234260, DOI 10.1007/BF02771604
- Joram Lindenstrauss, Notes on Klee’s paper: “Polyhedral sections of convex bodies”, Israel J. Math. 4 (1966), 235–242. MR 209807, DOI 10.1007/BF02771638
- S. M. Srivastava, A course on Borel sets, Graduate Texts in Mathematics, vol. 180, Springer-Verlag, New York, 1998. MR 1619545, DOI 10.1007/978-3-642-85473-6
Bibliographic Information
- Carlo Alberto De Bernardi
- Affiliation: Dipartimento di Matematica per le Scienze economiche, finanziarie ed attuariali, Università Cattolica del Sacro Cuore, 20123 Milano, Italy
- MR Author ID: 873883
- Email: carloalberto.debernardi@unicatt.it, carloalberto.debernardi@gmail.com
- Received by editor(s): July 10, 2020
- Received by editor(s) in revised form: December 3, 2020
- Published electronically: May 11, 2021
- Additional Notes: The research of the author was partially supported by GNAMPA-INdAM, Project GNAMPA 2020.
- Communicated by: Stephen Dilworth
- © Copyright 2021 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 149 (2021), 3417-3424
- MSC (2020): Primary 46B20; Secondary 54D20
- DOI: https://doi.org/10.1090/proc/15510
- MathSciNet review: 4273145