On $t$-adic Littlewood conjecture for certain infinite products
HTML articles powered by AMS MathViewer
- by D. Badziahin
- Proc. Amer. Math. Soc. 149 (2021), 4527-4540
- DOI: https://doi.org/10.1090/proc/15475
- Published electronically: August 6, 2021
- PDF | Request permission
Abstract:
We consider a Laurent series defined by the infinite product $g_u(t) = \prod _{n=0}^\infty (1 + ut^{-2^n})$, where $u\in \mathbb {F}$ is a parameter and $\mathbb {F}$ is a field. We show that for all $u\in \mathbb {Q}\setminus \{-1,0,1\}$ the series $g_u(t)$ does not satisfy the $t$-adic Littlewood conjecture. On the other hand, if $\mathbb {F}$ is finite then $g_u(t)\in \mathbb {F}((t^{-1}))$ is either rational or it satisfies the $t$-adic Littlewood conjecture.References
- F. Adiceam, E. Nesharim, and F. Lunnon, On the $t$-adic Littlewood conjecture, Duke Math J., to appear, DOI 10.1215/00127094-2020-0077.
- J.-P. Allouche, J. Peyrière, Z.-X. Wen, and Z.-Y. Wen, Hankel determinants of the Thue-Morse sequence, Ann. Inst. Fourier (Grenoble) 48 (1998), no. 1, 1–27 (English, with English and French summaries). MR 1614914
- Dmitry Badziahin, Continued fractions of certain Mahler functions, Acta Arith. 188 (2019), no. 1, 53–81. MR 3914935, DOI 10.4064/aa170705-27-4
- Yann Bugeaud, Around the Littlewood conjecture in Diophantine approximation, Numéro consacré au trimestre “Méthodes arithmétiques et applications”, automne 2013, Publ. Math. Besançon Algèbre Théorie Nr., vol. 2014/1, Presses Univ. Franche-Comté, Besançon, 2014, pp. 5–18 (English, with English and French summaries). MR 3362627
- Yann Bugeaud, Guo-Niu Han, Zhi-Ying Wen, and Jia-Yan Yao, Hankel determinants, Padé approximations, and irrationality exponents, Int. Math. Res. Not. IMRN 5 (2016), 1467–1496. MR 3509933, DOI 10.1093/imrn/rnv185
- Yann Bugeaud and Bernard de Mathan, On a mixed Littlewood conjecture in fields of power series, Diophantine analysis and related fields—DARF 2007/2008, AIP Conf. Proc., vol. 976, Amer. Inst. Phys., Melville, NY, 2008, pp. 19–30. MR 2405622, DOI 10.1063/1.2841906
- Michael Coons, On the rational approximation of the sum of the reciprocals of the Fermat numbers, Ramanujan J. 30 (2013), no. 1, 39–65. MR 3010463, DOI 10.1007/s11139-012-9410-x
- Guo-Niu Han, Hankel determinant calculus for the Thue-Morse and related sequences, J. Number Theory 147 (2015), 374–395. MR 3276331, DOI 10.1016/j.jnt.2014.07.022
- Guo-Niu Han, Hankel continued fraction and its applications, Adv. Math. 303 (2016), 295–321. MR 3552527, DOI 10.1016/j.aim.2016.08.013
- Bernard de Mathan and Olivier Teulié, Problèmes diophantiens simultanés, Monatsh. Math. 143 (2004), no. 3, 229–245 (French, with English summary). MR 2103807, DOI 10.1007/s00605-003-0199-y
- Alf van der Poorten, Formal power series and their continued fraction expansion, Algorithmic number theory (Portland, OR, 1998) Lecture Notes in Comput. Sci., vol. 1423, Springer, Berlin, 1998, pp. 358–371. MR 1726084, DOI 10.1007/BFb0054875
- H. Davenport and Wolfgang M. Schmidt, Approximation to real numbers by algebraic integers, Acta Arith. 15 (1968/69), 393–416. MR 246822, DOI 10.4064/aa-15-4-393-416
Bibliographic Information
- D. Badziahin
- Affiliation: School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia
- MR Author ID: 820873
- ORCID: 0000-0001-9062-2222
- Email: dzmitry.badziahin@sydney.edu.au
- Received by editor(s): January 6, 2020
- Received by editor(s) in revised form: January 6, 2021
- Published electronically: August 6, 2021
- Communicated by: Matthew A. Papanikolas
- © Copyright 2021 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 149 (2021), 4527-4540
- MSC (2020): Primary 11J61; Secondary 11C20, 11B85
- DOI: https://doi.org/10.1090/proc/15475
- MathSciNet review: 4310083