On the algebraic functional equation for the mixed signed Selmer group over multiple $\mathbb {Z}_{p}$-extensions
HTML articles powered by AMS MathViewer
- by Suman Ahmed and Meng Fai Lim
- Proc. Amer. Math. Soc. 149 (2021), 4541-4553
- DOI: https://doi.org/10.1090/proc/15525
- Published electronically: August 12, 2021
- PDF | Request permission
Abstract:
Let $E$ be an elliptic curve defined over a number field with good reduction at all primes above a fixed odd prime $p$, where at least one of which is a supersingular prime of $E$. In this paper, we will establish the algebraic functional equation for the mixed signed Selmer groups of $E$ over a multiple $\mathbb {Z}_{p}$-extension.References
- Suman Ahmed and Meng Fai Lim, On the signed Selmer groups of congruent elliptic curves with semistable reduction at all primes above $p$, Acta Arith. 197 (2021), no. 4, 353–377. MR 4201431, DOI 10.4064/aa190711-21-6
- Suman Ahmed and Meng Fai Lim, On the algebraic functional equation of the eigenspaces of mixed signed Selmer groups of elliptic curves with good reduction at primes above $p$, Acta Math. Sin. (Engl. Ser.) 37 (2021), no. 2, 289–305. MR 4215143, DOI 10.1007/s10114-020-9556-1
- Kâzım Büyükboduk and Antonio Lei, Integral Iwasawa theory of Galois representations for non-ordinary primes, Math. Z. 286 (2017), no. 1-2, 361–398. MR 3648502, DOI 10.1007/s00209-016-1765-z
- Kâzım Büyükboduk and Antonio Lei, Coleman-adapted Rubin-Stark Kolyvagin systems and supersingular Iwasawa theory of CM abelian varieties, Proc. Lond. Math. Soc. (3) 111 (2015), no. 6, 1338–1378. MR 3447796, DOI 10.1112/plms/pdv054
- Kâzım Büyükboduk and Antonio Lei, Functional equation for $p$-adic Rankin-Selberg $L$-functions, Ann. Math. Qué. 44 (2020), no. 1, 9–25 (English, with English and French summaries). MR 4071870, DOI 10.1007/s40316-019-00117-2
- Matthias Flach, A generalisation of the Cassels-Tate pairing, J. Reine Angew. Math. 412 (1990), 113–127. MR 1079004, DOI 10.1515/crll.1990.412.113
- Ralph Greenberg, Iwasawa theory for $p$-adic representations, Algebraic number theory, Adv. Stud. Pure Math., vol. 17, Academic Press, Boston, MA, 1989, pp. 97–137. MR 1097613, DOI 10.2969/aspm/01710097
- Ralph Greenberg, Iwasawa theory for elliptic curves, Arithmetic theory of elliptic curves (Cetraro, 1997) Lecture Notes in Math., vol. 1716, Springer, Berlin, 1999, pp. 51–144. MR 1754686, DOI 10.1007/BFb0093453
- Li Guo, On a generalization of Tate dualities with application to Iwasawa theory, Compositio Math. 85 (1993), no. 2, 125–161. MR 1204778
- Kenkichi Iwasawa, On $\textbf {Z}_{l}$-extensions of algebraic number fields, Ann. of Math. (2) 98 (1973), 246–326. MR 349627, DOI 10.2307/1970784
- Kazuya Kato, $p$-adic Hodge theory and values of zeta functions of modular forms, Astérisque 295 (2004), ix, 117–290 (English, with English and French summaries). Cohomologies $p$-adiques et applications arithmétiques. III. MR 2104361
- Byoung Du Kim, The parity conjecture for elliptic curves at supersingular reduction primes, Compos. Math. 143 (2007), no. 1, 47–72. MR 2295194, DOI 10.1112/S0010437X06002569
- Byoung Du Kim, The algebraic functional equation of an elliptic curve at supersingular primes, Math. Res. Lett. 15 (2008), no. 1, 83–94. MR 2367176, DOI 10.4310/MRL.2008.v15.n1.a8
- Byoung Du Kim, Signed-Selmer groups over the $\Bbb {Z}_p^2$-extension of an imaginary quadratic field, Canad. J. Math. 66 (2014), no. 4, 826–843. MR 3224266, DOI 10.4153/CJM-2013-043-2
- Byoung Du Kim and Jeehoon Park, The main conjecture of Iwasawa theory for elliptic curves with complex multiplication over abelian extensions at supersingular primes, Acta Arith. 181 (2017), no. 3, 209–238. MR 3732917, DOI 10.4064/aa8606-8-2017
- Takahiro Kitajima and Rei Otsuki, On the plus and the minus Selmer groups for elliptic curves at supersingular primes, Tokyo J. Math. 41 (2018), no. 1, 273–303. MR 3830819, DOI 10.3836/tjm/1502179270
- Shin-ichi Kobayashi, Iwasawa theory for elliptic curves at supersingular primes, Invent. Math. 152 (2003), no. 1, 1–36. MR 1965358, DOI 10.1007/s00222-002-0265-4
- King Fai Lai, Ignazio Longhi, Ki-Seng Tan, and Fabien Trihan, Pontryagin duality for Iwasawa modules and abelian varieties, Trans. Amer. Math. Soc. 370 (2018), no. 3, 1925–1958. MR 3739197, DOI 10.1090/tran/7016
- A. Lei and M. F. Lim, Akashi series and Euler characteristics of signed Selmer groups of elliptic curves with semistable reduction at primes above $p$, accepted for publication in J. Theor. Nombres Bordeaux.
- Antonio Lei and Bharathwaj Palvannan, Codimension two cycles in Iwasawa theory and elliptic curves with supersingular reduction, Forum Math. Sigma 7 (2019), Paper No. e25, 81. MR 3993809, DOI 10.1017/fms.2019.17
- Antonio Lei and Gautier Ponsinet, Functional equations for multi-signed Selmer groups, Ann. Math. Qué. 41 (2017), no. 1, 155–167 (English, with English and French summaries). MR 3639655, DOI 10.1007/s40316-016-0063-9
- Antonio Lei and Florian Sprung, Ranks of elliptic curves over $\Bbb Z_p^2$-extensions, Israel J. Math. 236 (2020), no. 1, 183–206. MR 4093883, DOI 10.1007/s11856-020-1969-0
- David Loeffler, $p$-adic integration on ray class groups and non-ordinary $p$-adic $L$-functions, Iwasawa theory 2012, Contrib. Math. Comput. Sci., vol. 7, Springer, Heidelberg, 2014, pp. 357–378. MR 3586820
- Barry Mazur, Rational points of abelian varieties with values in towers of number fields, Invent. Math. 18 (1972), 183–266. MR 444670, DOI 10.1007/BF01389815
- Jürgen Neukirch, Alexander Schmidt, and Kay Wingberg, Cohomology of number fields, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 323, Springer-Verlag, Berlin, 2008. MR 2392026, DOI 10.1007/978-3-540-37889-1
- Yoshihiro Ochi and Otmar Venjakob, On the ranks of Iwasawa modules over $p$-adic Lie extensions, Math. Proc. Cambridge Philos. Soc. 135 (2003), no. 1, 25–43. MR 1990830, DOI 10.1017/S0305004102006564
- Robert Pollack, On the $p$-adic $L$-function of a modular form at a supersingular prime, Duke Math. J. 118 (2003), no. 3, 523–558. MR 1983040, DOI 10.1215/S0012-7094-03-11835-9
- Peter Schneider, $p$-adic height pairings. II, Invent. Math. 79 (1985), no. 2, 329–374. MR 778132, DOI 10.1007/BF01388978
- Christopher Skinner and Eric Urban, The Iwasawa main conjectures for $\rm GL_2$, Invent. Math. 195 (2014), no. 1, 1–277. MR 3148103, DOI 10.1007/s00222-013-0448-1
- Florian Sprung, On pairs of $p$-adic $L$-functions for weight-two modular forms, Algebra Number Theory 11 (2017), no. 4, 885–928. MR 3665640, DOI 10.2140/ant.2017.11.885
- G. Zábrádi, Characteristic elements, pairings and functional equations over the false Tate curve extension. Math. Proc. Cambridge Philos. Soc. 144 (2008), no. 3, 535–574.
- Gergely Zábrádi, Pairings and functional equations over the $\textrm {GL}_2$-extension, Proc. Lond. Math. Soc. (3) 101 (2010), no. 3, 893–930. MR 2734964, DOI 10.1112/plms/pdq015
Bibliographic Information
- Suman Ahmed
- Affiliation: School of Mathematics and Statistics, Central China Normal University, Wuhan, 430079, People’s Republic of China
- MR Author ID: 1100305
- ORCID: 0000-0001-5254-186X
- Email: npur.suman@gmail.com
- Meng Fai Lim
- Affiliation: School of Mathematics and Statistics $\&$ Hubei Key Laboratory of Mathematical Sciences, Central China Normal University, Wuhan, 430079, People’s Republic of China
- Email: limmf@mail.ccnu.edu.cn
- Received by editor(s): July 23, 2020
- Received by editor(s) in revised form: January 19, 2021
- Published electronically: August 12, 2021
- Additional Notes: The second author was supported by the National Natural Science Foundation of China under Grant Nos. 11550110172 and 11771164.
- Communicated by: Romyar T. Sharifi
- © Copyright 2021 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 149 (2021), 4541-4553
- MSC (2020): Primary 11R23, 11S25, 11G05
- DOI: https://doi.org/10.1090/proc/15525
- MathSciNet review: 4310084