Stabilising uniform property $\Gamma$
HTML articles powered by AMS MathViewer
- by Jorge Castillejos and Samuel Evington
- Proc. Amer. Math. Soc. 149 (2021), 4725-4737
- DOI: https://doi.org/10.1090/proc/15553
- Published electronically: August 4, 2021
Abstract:
We introduce stabilised property $\Gamma$, a $\mathrm {C}^*$-algebraic variant of property $\Gamma$ which is invariant under stable isomorphism. We then show that simple separable nuclear $\mathrm {C}^*$-algebras with stabilised property $\Gamma$ and $\mathrm {Cu}(A) \cong \mathrm {Cu}(A \otimes \mathcal {Z})$ absorb the Jiang-Su algebra $\mathcal {Z}$ tensorially.References
- Charles A. Akemann and Gert K. Pedersen, Ideal perturbations of elements in $C^*$-algebras, Math. Scand. 41 (1977), no. 1, 117–139. MR 473848, DOI 10.7146/math.scand.a-11707
- Ramon Antoine, Francesc Perera, Leonel Robert, and Hannes Thiel, $\mathrm {C}^*$-algebras of stable rank one and their Cuntz semigroups, arXiv:1809.03984v4, 2020.
- Pere Ara, Francesc Perera, and Andrew S. Toms, $K$-theory for operator algebras. Classification of $C^*$-algebras, Aspects of operator algebras and applications, Contemp. Math., vol. 534, Amer. Math. Soc., Providence, RI, 2011, pp. 1–71. MR 2767222, DOI 10.1090/conm/534/10521
- Selçuk Barlak and Gábor Szabó, Sequentially split $\ast$-homomorphisms between $\rm C^*$-algebras, Internat. J. Math. 27 (2016), no. 13, 1650105, 48. MR 3589655, DOI 10.1142/S0129167X16501056
- Bruce E. Blackadar and Joachim Cuntz, The structure of stable algebraically simple $C^{\ast }$-algebras, Amer. J. Math. 104 (1982), no. 4, 813–822. MR 667536, DOI 10.2307/2374206
- Etienne Blanchard and Eberhard Kirchberg, Non-simple purely infinite $C^*$-algebras: the Hausdorff case, J. Funct. Anal. 207 (2004), no. 2, 461–513. MR 2032998, DOI 10.1016/j.jfa.2003.06.008
- Joan Bosa, Nathanial P. Brown, Yasuhiko Sato, Aaron Tikuisis, Stuart White, and Wilhelm Winter, Covering dimension of $\rm C^*$-algebras and 2-coloured classification, Mem. Amer. Math. Soc. 257 (2019), no. 1233, vii+97. MR 3908669, DOI 10.1090/memo/1233
- Lawrence G. Brown, Stable isomorphism of hereditary subalgebras of $C^*$-algebras, Pacific J. Math. 71 (1977), no. 2, 335–348. MR 454645
- Jorge Castillejos and Samuel Evington, Nuclear dimension of simple stably projectionless $\textrm {C}^*$-algebras, Anal. PDE 13 (2020), no. 7, 2205–2240. MR 4175824, DOI 10.2140/apde.2020.13.2205
- Jorge Castillejos, Samuel Evington, Aaron Tikuisis, and Stuart White, Uniform property $\Gamma$, Int. Math. Res. Not. IMRN, to appear. arXiv:1912.04207, 2020.
- Jorge Castillejos, Samuel Evington, Aaron Tikuisis, Stuart White, and Wilhelm Winter, Nuclear dimension of simple $\rm C^*$-algebras, Invent. Math. 224 (2021), no. 1, 245–290. MR 4228503, DOI 10.1007/s00222-020-01013-1
- J. Dixmier, Quelques propriétés des suites centrales dans les facteurs de type $\textrm {II}_{1}$, Invent. Math. 7 (1969), 215–225 (French). MR 248534, DOI 10.1007/BF01404306
- George A. Elliott, Leonel Robert, and Luis Santiago, The cone of lower semicontinuous traces on a $C^*$-algebra, Amer. J. Math. 133 (2011), no. 4, 969–1005. MR 2823868, DOI 10.1353/ajm.2011.0027
- Uffe Haagerup, Quasitraces on exact $C^*$-algebras are traces, C. R. Math. Acad. Sci. Soc. R. Can. 36 (2014), no. 2-3, 67–92 (English, with English and French summaries). MR 3241179
- Bhishan Jacelon, $\scr Z$-stability, finite dimensional tracial boundaries and continuous rank functions, Münster J. Math. 6 (2013), no. 2, 583–594. MR 3148224
- Eberhard Kirchberg, Central sequences in $C^*$-algebras and strongly purely infinite algebras, Operator Algebras: The Abel Symposium 2004, Abel Symp., vol. 1, Springer, Berlin, 2006, pp. 175–231. MR 2265050, DOI 10.1007/978-3-540-34197-0_{1}0
- Eberhard Kirchberg and N. Christopher Phillips, Embedding of exact $C^*$-algebras in the Cuntz algebra $\scr O_2$, J. Reine Angew. Math. 525 (2000), 17–53. MR 1780426, DOI 10.1515/crll.2000.065
- Eberhard Kirchberg and Mikael Rørdam, Central sequence $C^*$-algebras and tensorial absorption of the Jiang-Su algebra, J. Reine Angew. Math. 695 (2014), 175–214. MR 3276157, DOI 10.1515/crelle-2012-0118
- Terry A. Loring, $C^*$-algebras generated by stable relations, J. Funct. Anal. 112 (1993), no. 1, 159–203. MR 1207940, DOI 10.1006/jfan.1993.1029
- Hiroki Matui and Yasuhiko Sato, Strict comparison and $\scr {Z}$-absorption of nuclear $C^*$-algebras, Acta Math. 209 (2012), no. 1, 179–196. MR 2979512, DOI 10.1007/s11511-012-0084-4
- Hiroki Matui and Yasuhiko Sato, Decomposition rank of UHF-absorbing $\mathrm {C}^*$-algebras, Duke Math. J. 163 (2014), no. 14, 2687–2708. MR 3273581, DOI 10.1215/00127094-2826908
- F. J. Murray and J. von Neumann, On rings of operators. IV, Ann. of Math. (2) 44 (1943), 716–808. MR 9096, DOI 10.2307/1969107
- Norio Nawata, Picard groups of certain stably projectionless $\rm C^*$-algebras, J. Lond. Math. Soc. (2) 88 (2013), no. 1, 161–180. MR 3092263, DOI 10.1112/jlms/jdt013
- Eduard Ortega, Francesc Perera, and Mikael Rørdam, The corona factorization property, stability, and the Cuntz semigroup of a $C^\ast$-algebra, Int. Math. Res. Not. IMRN 1 (2012), 34–66. MR 2874927, DOI 10.1093/imrn/rnr013
- Mikael Rørdam, The stable and the real rank of $\scr Z$-absorbing $C^*$-algebras, Internat. J. Math. 15 (2004), no. 10, 1065–1084. MR 2106263, DOI 10.1142/S0129167X04002661
- Mikael Rørdam and Wilhelm Winter, The Jiang-Su algebra revisited, J. Reine Angew. Math. 642 (2010), 129–155. MR 2658184, DOI 10.1515/CRELLE.2010.039
- Yasuhiko Sato, Discrete amenable group actions on von Neumann algebras and invariant nuclear C$^*$-subalgebras, arXiv:1104.4339, 2011.
- Yasuhiko Sato, Stuart White, and Wilhelm Winter, Nuclear dimension and $\mathcal {Z}$-stability, Invent. Math. 202 (2015), no. 2, 893–921. MR 3418247, DOI 10.1007/s00222-015-0580-1
- Gábor Szabó, Equivariant property (SI) revisited, Anal. PDE 14 (2021), no. 4, 1199–1232. MR 4283693, DOI 10.2140/apde.2021.14.1199
- Hannes Thiel, Ranks of operators in simple $C^*$-algebras with stable rank one, Comm. Math. Phys. 377 (2020), no. 1, 37–76. MR 4107924, DOI 10.1007/s00220-019-03491-8
- Aaron Tikuisis, Nuclear dimension, $\cal {Z}$-stability, and algebraic simplicity for stably projectionless $C^\ast$-algebras, Math. Ann. 358 (2014), no. 3-4, 729–778. MR 3175139, DOI 10.1007/s00208-013-0951-0
- Aaron Peter Tikuisis and Andrew Toms, On the structure of Cuntz semigroups in (possibly) nonunital $\rm C^*$-algebras, Canad. Math. Bull. 58 (2015), no. 2, 402–414. MR 3334936, DOI 10.4153/CMB-2014-040-5
- Andrew S. Toms and Wilhelm Winter, Strongly self-absorbing $C^*$-algebras, Trans. Amer. Math. Soc. 359 (2007), no. 8, 3999–4029. MR 2302521, DOI 10.1090/S0002-9947-07-04173-6
- Wilhelm Winter, Nuclear dimension and $\scr {Z}$-stability of pure $\rm C^*$-algebras, Invent. Math. 187 (2012), no. 2, 259–342. MR 2885621, DOI 10.1007/s00222-011-0334-7
- Wilhelm Winter, Structure of nuclear $\rm C^*$-algebras: from quasidiagonality to classification and back again, Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. III. Invited lectures, World Sci. Publ., Hackensack, NJ, 2018, pp. 1801–1823. MR 3966830
Bibliographic Information
- Jorge Castillejos
- Affiliation: Institute of Mathematics, Polish Academy of Sciences, ul. Śniadeckich 8, 00-656 Warszawa, Poland
- MR Author ID: 1189114
- Email: jcastillejoslopez@impan.pl
- Samuel Evington
- Affiliation: Mathematical Institute, University of Oxford, Oxford, OX2 6GG, United Kingdom
- Address at time of publication: Mathematical Institute, University of Münster, Einsteinstrasse 62, 48149 Münster, Germany
- MR Author ID: 1185883
- ORCID: 0000-0001-7562-8394
- Email: evington@uni-muenster.de
- Received by editor(s): October 21, 2020
- Received by editor(s) in revised form: January 29, 2021
- Published electronically: August 4, 2021
- Additional Notes: The first author was partially supported by long term structural funding – a Methusalem grant of the Flemish Government. The second author was supported by EPSRC grant EP/R025061/2.
- Communicated by: Adrian Ioana
- © Copyright 2021 by the authors
- Journal: Proc. Amer. Math. Soc. 149 (2021), 4725-4737
- MSC (2020): Primary 46L35
- DOI: https://doi.org/10.1090/proc/15553
- MathSciNet review: 4310098