Hyperbolic 3-manifolds with large kissing number
HTML articles powered by AMS MathViewer
- by Cayo Dória and Plinio G. P. Murillo
- Proc. Amer. Math. Soc. 149 (2021), 4595-4607
- DOI: https://doi.org/10.1090/proc/15575
- Published electronically: August 4, 2021
- PDF | Request permission
Abstract:
In this article we construct a sequence $\{M_i\}$ of non compact finite volume hyperbolic $3$-manifolds whose kissing number grows at least as $\mathrm {vol}(M_i)^{\frac {31}{27}-\epsilon }$ for any $\epsilon >0$. This extends a previous result due to Schmutz in dimension $2$.References
- M. F. Bourque and B. Petri, Kissing numbers of closed hyperbolic manifolds, Preprint, arXiv:1905.11083, 2019.
- Federica Fanoni and Hugo Parlier, Systoles and kissing numbers of finite area hyperbolic surfaces, Algebr. Geom. Topol. 15 (2015), no. 6, 3409–3433. MR 3450766, DOI 10.2140/agt.2015.15.3409
- Matthieu Gendulphe, Systole et rayon interne des variétés hyperboliques non compactes, Geom. Topol. 19 (2015), no. 4, 2039–2080 (French, with English and French summaries). MR 3375522, DOI 10.2140/gt.2015.19.2039
- Dorian Goldfeld, Gauss’s class number problem for imaginary quadratic fields, Bull. Amer. Math. Soc. (N.S.) 13 (1985), no. 1, 23–37. MR 788386, DOI 10.1090/S0273-0979-1985-15352-2
- Mikhail G. Katz, Mary Schaps, and Uzi Vishne, Logarithmic growth of systole of arithmetic Riemann surfaces along congruence subgroups, J. Differential Geom. 76 (2007), no. 3, 399–422. MR 2331526
- Robert A. Kucharczyk, Modular embeddings and rigidity for Fuchsian groups, Acta Arith. 169 (2015), no. 1, 77–100. MR 3353269, DOI 10.4064/aa169-1-5
- Colin Maclachlan and Alan W. Reid, The arithmetic of hyperbolic 3-manifolds, Graduate Texts in Mathematics, vol. 219, Springer-Verlag, New York, 2003. MR 1937957, DOI 10.1007/978-1-4757-6720-9
- Plinio G. P. Murillo, On growth of systole along congruence coverings of Hilbert modular varieties, Algebr. Geom. Topol. 17 (2017), no. 5, 2753–2762. MR 3704241, DOI 10.2140/agt.2017.17.2753
- Hugo Parlier, Kissing numbers for surfaces, J. Topol. 6 (2013), no. 3, 777–791. MR 3100890, DOI 10.1112/jtopol/jtt012
- P. Sarnak, The arithmetic and geometry of some hyperbolic three-manifolds, Acta Math. 151 (1983), no. 3-4, 253–295. MR 723012, DOI 10.1007/BF02393209
- Paul Schmutz, Systoles on Riemann surfaces, Manuscripta Math. 85 (1994), no. 3-4, 429–447. MR 1305753, DOI 10.1007/BF02568209
- Paul Schmutz, Arithmetic Fuchsian groups and the number of systoles, Math. Z. 223 (1996), no. 1, 13–25. MR 1408860, DOI 10.1007/PL00004268
- Paul Schmutz, Compact Riemann surfaces with many systoles, Duke Math. J. 84 (1996), no. 1, 191–198. MR 1394752, DOI 10.1215/S0012-7094-96-08406-9
- Paul Schmutz Schaller, Extremal Riemann surfaces with a large number of systoles, Extremal Riemann surfaces (San Francisco, CA, 1995) Contemp. Math., vol. 201, Amer. Math. Soc., Providence, RI, 1997, pp. 9–19. MR 1429190, DOI 10.1090/conm/201/02617
Bibliographic Information
- Cayo Dória
- Affiliation: Universidade de Goiás, Instituto de Matemática e Estatística, Rua Jacarandá – Chácaras Califórnia, 74001-970, Goiânia, Goiás, Brazil
- ORCID: 0000-0003-2654-8915
- Email: cayodoria@ufg.br
- Plinio G. P. Murillo
- Affiliation: Universidade Federal Fluminense, Instituto de Matemática e Estatística, Rua Prof. Marcos Waldemar de Freitas Reis, S/n, Bloco H, Campus do Gragoatã, 24210-201 Niterói, Rio de Janeiro, Brazil
- MR Author ID: 1232945
- ORCID: 0000-0002-8086-7135
- Email: pliniom@id.uff.br
- Received by editor(s): March 17, 2020
- Received by editor(s) in revised form: January 28, 2021, and February 21, 2021
- Published electronically: August 4, 2021
- Additional Notes: The first author was supported by FAPESP grant 2018/15750-9
The second author was supported by the KIAS Individual Grant MG072601 - Communicated by: David Futer
- © Copyright 2021 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 149 (2021), 4595-4607
- MSC (2020): Primary 11H55; Secondary 20H05
- DOI: https://doi.org/10.1090/proc/15575
- MathSciNet review: 4310088