Unital Banach algebras not isomorphic to Calkin algebras of separable Banach spaces
HTML articles powered by AMS MathViewer
- by Bence Horváth and Tomasz Kania
- Proc. Amer. Math. Soc. 149 (2021), 4781-4787
- DOI: https://doi.org/10.1090/proc/15589
- Published electronically: August 6, 2021
- PDF | Request permission
Abstract:
Recent developments in Banach space theory provided unexpected examples of unital Banach algebras that are isomorphic to Calkin algebras of Banach spaces, however no example of a unital Banach algebra that cannot be realised as a Calkin algebra has been found so far. This naturally led to the question of possible limitations of such assignments. In the present note we provide examples of unital Banach algebras meeting the necessary density condition for being the Calkin algebra of a separable Banach space that are not isomorphic to Calkin algebras of such spaces, nonetheless. The examples may be found of the form $C(X)$ for a compact space $X$, $\ell _1(G)$ for some torsion-free Abelian group, and a simple, unital AF $C^*$-algebra. Extensions to higher densities are also presented.References
- Spiros A. Argyros and Richard G. Haydon, A hereditarily indecomposable $\scr L_\infty$-space that solves the scalar-plus-compact problem, Acta Math. 206 (2011), no. 1, 1–54. MR 2784662, DOI 10.1007/s11511-011-0058-y
- Mohammad B. Asadi and A. Khosravi, An elementary proof of the characterization of isomorphisms of standard operator algebras, Proc. Amer. Math. Soc. 134 (2006), no. 11, 3255–3256. MR 2231909, DOI 10.1090/S0002-9939-06-08375-4
- Aleksandr I. Bashkirov, On Fréchet compactifications of discrete spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. 28 (1980), no. 5-6, 301–305 (1981) (English, with Russian summary). MR 620205
- Philip A. H. Brooker, Szlenk and $w^*$-dentability indices of the Banach spaces $C([0,\alpha ])$, J. Math. Anal. Appl. 399 (2013), no. 2, 559–564. MR 2996733, DOI 10.1016/j.jmaa.2012.10.028
- Paul R. Chernoff, Representations, automorphisms, and derivations of some operator algebras, J. Functional Analysis 12 (1973), 275–289. MR 0350442, DOI 10.1016/0022-1236(73)90080-3
- A. Dow, A. V. Gubbi, and A. Szymański, Rigid Stone spaces within $\textrm {ZFC}$, Proc. Amer. Math. Soc. 102 (1988), no. 3, 745–748. MR 929014, DOI 10.1090/S0002-9939-1988-0929014-4
- Ilijas Farah and Takeshi Katsura, Nonseparable UHF algebras II: Classification, Math. Scand. 117 (2015), no. 1, 105–125. MR 3403788, DOI 10.7146/math.scand.a-22238
- L. Terrell Gardner, On isomorphisms of $C^{\ast }$-algebras, Amer. J. Math. 87 (1965), 384–396. MR 179637, DOI 10.2307/2373010
- Petr Hájek, Vicente Montesinos Santalucía, Jon Vanderwerff, and Václav Zizler, Biorthogonal systems in Banach spaces, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, vol. 26, Springer, New York, 2008. MR 2359536
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. I, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 115, Springer-Verlag, Berlin-New York, 1979. Structure of topological groups, integration theory, group representations. MR 551496
- Tomasz Kania and Niels Jakob Laustsen, Ideal structure of the algebra of bounded operators acting on a Banach space, Indiana Univ. Math. J. 66 (2017), no. 3, 1019–1043. MR 3663335, DOI 10.1512/iumj.2017.66.6037
- Robert E. Megginson, An introduction to Banach space theory, Graduate Texts in Mathematics, vol. 183, Springer-Verlag, New York, 1998. MR 1650235, DOI 10.1007/978-1-4612-0603-3
- Pavlos Motakis, Daniele Puglisi, and Andreas Tolias, Algebras of diagonal operators of the form scalar-plus-compact are Calkin algebras, Michigan Math. J. 69 (2020), no. 1, 97–152. MR 4071347, DOI 10.1307/mmj/1574845272
- Pavlos Motakis, Daniele Puglisi, and Despoina Zisimopoulou, A hierarchy of Banach spaces with $C(K)$ Calkin algebras, Indiana Univ. Math. J. 65 (2016), no. 1, 39–67. MR 3466455, DOI 10.1512/iumj.2016.65.5756
- Joram Lindenstrauss, On complemented subspaces of $m$, Israel J. Math. 5 (1967), 153–156. MR 222616, DOI 10.1007/BF02771101
- A. Orsatti and N. Rodinò, Homeomorphisms between finite powers of topological spaces, Topology Appl. 23 (1986), no. 3, 271–277. MR 858335, DOI 10.1016/0166-8641(85)90044-6
- Gert K. Pedersen, Analysis now, Graduate Texts in Mathematics, vol. 118, Springer-Verlag, New York, 1989. MR 971256, DOI 10.1007/978-1-4612-1007-8
- Walter Rudin, Continuous functions on compact spaces without perfect subsets, Proc. Amer. Math. Soc. 8 (1957), 39–42. MR 85475, DOI 10.1090/S0002-9939-1957-0085475-7
- Raymond A. Ryan, Introduction to tensor products of Banach spaces, Springer Monographs in Mathematics, Springer-Verlag London, Ltd., London, 2002. MR 1888309, DOI 10.1007/978-1-4471-3903-4
- C. Samuel, Indice de Szlenk des $C(K)$ ($K$ espace topologique compact dénombrable), Seminar on the geometry of Banach spaces, Vol. I, II (Paris, 1983) Publ. Math. Univ. Paris VII, vol. 18, Univ. Paris VII, Paris, 1984, pp. 81–91 (French). MR 781569
- Matthew Tarbard, Operators on banach spaces of Bourgain-Delbaen type, ProQuest LLC, Ann Arbor, MI, 2013. Thesis (D.Phil.)–University of Oxford (United Kingdom). MR 3271750
Bibliographic Information
- Bence Horváth
- Affiliation: Institute of Mathematics, Czech Academy of Sciences, Žitná 25, 115 67 Prague 1, Czech Republic
- MR Author ID: 1377121
- Email: horvath@math.cas.cz
- Tomasz Kania
- Affiliation: Institute of Mathematics, Czech Academy of Sciences, Žitná 25, 115 67 Prague 1, Czech Republic; and Institute of Mathematics, Jagiellonian University, Łojasiewicza 6, 30-348 Kraków, Poland
- MR Author ID: 976766
- ORCID: 0000-0002-2002-7230
- Email: kania@math.cas.cz, tomasz.marcin.kania@gmail.com
- Received by editor(s): January 13, 2021
- Received by editor(s) in revised form: March 1, 2021, and March 2, 2021
- Published electronically: August 6, 2021
- Additional Notes: The authors were supported by GACR project from GAČR project 19-07129Y; RVO 67985840
- Communicated by: Stephen Dilworth
- © Copyright 2021 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 149 (2021), 4781-4787
- MSC (2020): Primary 47L10; Secondary 46B03
- DOI: https://doi.org/10.1090/proc/15589
- MathSciNet review: 4310103