Homomorphisms relative to additive convolutions and max-convolutions: Free, boolean and classical cases
HTML articles powered by AMS MathViewer
- by Takahiro Hasebe and Yuki Ueda
- Proc. Amer. Math. Soc. 149 (2021), 4799-4814
- DOI: https://doi.org/10.1090/proc/15595
- Published electronically: August 12, 2021
- PDF | Request permission
Abstract:
We introduce new homomorphisms relative to additive convolutions and max-convolutions in free, boolean and classical cases. Crucial roles are played by the limit distributions for free multiplicative law of large numbers.References
- T. Ando, Majorization, doubly stochastic matrices, and comparison of eigenvalues, Linear Algebra Appl. 118 (1989), 163–248. MR 995373, DOI 10.1016/0024-3795(89)90580-6
- Michael Anshelevich and Octavio Arizmendi, The exponential map in non-commutative probability, Int. Math. Res. Not. IMRN 17 (2017), 5302–5342. MR 3694601, DOI 10.1093/imrn/rnw164
- Octavio Arizmendi and Takahiro Hasebe, Classical scale mixtures of Boolean stable laws, Trans. Amer. Math. Soc. 368 (2016), no. 7, 4873–4905. MR 3456164, DOI 10.1090/tran/6792
- Octavio Arizmendi, Takahiro Hasebe, and Noriyoshi Sakuma, On the law of free subordinators, ALEA Lat. Am. J. Probab. Math. Stat. 10 (2013), no. 1, 271–291. MR 3083927
- Ole E. Barndorff-Nielsen and Steen Thorbjørnsen, Self-decomposability and Lévy processes in free probability, Bernoulli 8 (2002), no. 3, 323–366. MR 1913111
- O. E. Barndorff-Nielsen and S. Thorbjørnsen, A connection between free and classical infinite divisibility, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 7 (2004), no. 4, 573–590. MR 2105912, DOI 10.1142/S0219025704001773
- Serban Teodor Belinschi, The atoms of the free multiplicative convolution of two probability distributions, Integral Equations Operator Theory 46 (2003), no. 4, 377–386. MR 1997977, DOI 10.1007/s00020-002-1145-4
- S. T. Belinschi and H. Bercovici, Atoms and regularity for measures in a partially defined free convolution semigroup, Math. Z. 248 (2004), no. 4, 665–674. MR 2103535, DOI 10.1007/s00209-004-0671-y
- Serban T. Belinschi and Alexandru Nica, On a remarkable semigroup of homomorphisms with respect to free multiplicative convolution, Indiana Univ. Math. J. 57 (2008), no. 4, 1679–1713. MR 2440877, DOI 10.1512/iumj.2008.57.3285
- Gerard Ben Arous and Dan Virgil Voiculescu, Free extreme values, Ann. Probab. 34 (2006), no. 5, 2037–2059. MR 2271490, DOI 10.1214/009117906000000016
- Hari Bercovici and Vittorino Pata, Stable laws and domains of attraction in free probability theory, Ann. of Math. (2) 149 (1999), no. 3, 1023–1060. With an appendix by Philippe Biane. MR 1709310, DOI 10.2307/121080
- Hari Bercovici and Dan Voiculescu, Free convolution of measures with unbounded support, Indiana Univ. Math. J. 42 (1993), no. 3, 733–773. MR 1254116, DOI 10.1512/iumj.1993.42.42033
- Philippe Biane, Processes with free increments, Math. Z. 227 (1998), no. 1, 143–174. MR 1605393, DOI 10.1007/PL00004363
- G. P. Chistyakov and F. Götze, Limit theorems in free probability theory. I, Ann. Probab. 36 (2008), no. 1, 54–90. MR 2370598, DOI 10.1214/009117907000000051
- Uffe Haagerup and Sören Möller, The law of large numbers for the free multiplicative convolution, Operator algebra and dynamics, Springer Proc. Math. Stat., vol. 58, Springer, Heidelberg, 2013, pp. 157–186. MR 3142036, DOI 10.1007/978-3-642-39459-1_{8}
- Uffe Haagerup and Hanne Schultz, Brown measures of unbounded operators affiliated with a finite von Neumann algebra, Math. Scand. 100 (2007), no. 2, 209–263. MR 2339369, DOI 10.7146/math.scand.a-15023
- Takahiro Hasebe, Monotone convolution semigroups, Studia Math. 200 (2010), no. 2, 175–199. MR 2725900, DOI 10.4064/sm200-2-5
- Takahiro Hasebe and Alexey Kuznetsov, On free stable distributions, Electron. Commun. Probab. 19 (2014), no. 56, 12. MR 3254735, DOI 10.1214/ECP.v19-3443
- Takahiro Hasebe and Noriyoshi Sakuma, Unimodality of Boolean and monotone stable distributions, Demonstr. Math. 48 (2015), no. 3, 424–439. MR 3391380, DOI 10.1515/dema-2015-0030
- Takahiro Hasebe, Thomas Simon, and Min Wang, Some properties of the free stable distributions, Ann. Inst. Henri Poincaré Probab. Stat. 56 (2020), no. 1, 296–325 (English, with English and French summaries). MR 4058989, DOI 10.1214/19-AIHP962
- Takahiro Hasebe and Kamil Szpojankowski, On free generalized inverse Gaussian distributions, Complex Anal. Oper. Theory 13 (2019), no. 7, 3091–3116. MR 4020026, DOI 10.1007/s11785-018-0790-9
- James A. Mingo and Roland Speicher, Free probability and random matrices, Fields Institute Monographs, vol. 35, Springer, New York; Fields Institute for Research in Mathematical Sciences, Toronto, ON, 2017. MR 3585560, DOI 10.1007/978-1-4939-6942-5
- Alexandru Nica and Roland Speicher, Lectures on the combinatorics of free probability, London Mathematical Society Lecture Note Series, vol. 335, Cambridge University Press, Cambridge, 2006. MR 2266879, DOI 10.1017/CBO9780511735127
- Victor Pérez-Abreu and Noriyoshi Sakuma, Free infinite divisibility of free multiplicative mixtures of the Wigner distribution, J. Theoret. Probab. 25 (2012), no. 1, 100–121. MR 2886381, DOI 10.1007/s10959-010-0288-5
- Sidney I. Resnick, Extreme values, regular variation, and point processes, Applied Probability. A Series of the Applied Probability Trust, vol. 4, Springer-Verlag, New York, 1987. MR 900810, DOI 10.1007/978-0-387-75953-1
- Noriyoshi Sakuma, On free regular infinitely divisible distributions, Spectra of random operators and related topics, RIMS Kôkyûroku Bessatsu, B27, Res. Inst. Math. Sci. (RIMS), Kyoto, 2011, pp. 115–121. MR 2885258
- Ken-iti Sato, Lévy processes and infinitely divisible distributions, Cambridge Studies in Advanced Mathematics, vol. 68, Cambridge University Press, Cambridge, 2013. Translated from the 1990 Japanese original; Revised edition of the 1999 English translation. MR 3185174
- Roland Speicher and Reza Woroudi, Boolean convolution, Free probability theory (Waterloo, ON, 1995) Fields Inst. Commun., vol. 12, Amer. Math. Soc., Providence, RI, 1997, pp. 267–279. MR 1426845
- Kamil Szpojankowski, On the Lukacs property for free random variables, Studia Math. 228 (2015), no. 1, 55–72. MR 3416954, DOI 10.4064/sm228-1-6
- Gabriel H. Tucci, Limits laws for geometric means of free random variables, Indiana Univ. Math. J. 59 (2010), no. 1, 1–13. MR 2666470, DOI 10.1512/iumj.2010.59.3775
- Y. Ueda, Limit theorems for classical, freely and Boolean max-infinitely divisible distributions, to appear in J. Theoret. Probab., arXiv:1907.11996.
- Yuki Ueda, Max-convolution semigroups and extreme values in limit theorems for the free multiplicative convolution, Bernoulli 27 (2021), no. 1, 502–531. MR 4177378, DOI 10.3150/20-BEJ1247
- Jorge Garza Vargas and Dan Virgil Voiculescu, Boolean extremes and Dagum distributions, Indiana Univ. Math. J. 70 (2021), no. 2, 595–603. MR 4257621, DOI 10.1512/iumj.2021.70.8312
- Jiun-Chau Wang, Limit laws for Boolean convolutions, Pacific J. Math. 237 (2008), no. 2, 349–371. MR 2421126, DOI 10.2140/pjm.2008.237.349
- V. M. Zolotarev, One-dimensional stable distributions, Translations of Mathematical Monographs, vol. 65, American Mathematical Society, Providence, RI, 1986. Translated from the Russian by H. H. McFaden; Translation edited by Ben Silver. MR 854867, DOI 10.1090/mmono/065
Bibliographic Information
- Takahiro Hasebe
- Affiliation: Department of Mathematics, Hokkaido University, Kita 10, Nishi 8, Kita-Ku, Sapporo, Hokkaido 060-0810, Japan
- MR Author ID: 843606
- Email: thasebe@math.sci.hokudai.ac.jp
- Yuki Ueda
- Affiliation: Department of General Science, National Institute of Technology, Ichinoseki College, Takanashi, Hagisho, Ichinoseki, Iwate 021-8511, Japan
- MR Author ID: 1269379
- Email: yuki1114.prob@gmail.com
- Received by editor(s): November 21, 2020
- Received by editor(s) in revised form: March 9, 2021
- Published electronically: August 12, 2021
- Additional Notes: The first author was supported by JSPS Grant-in-Aid for Young Scientists 19K14546. This research is an outcome of Joint Seminar supported by JSPS and CNRS under the Japan-France Research Cooperative Program
- Communicated by: Adrian Ioana
- © Copyright 2021 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 149 (2021), 4799-4814
- MSC (2020): Primary 46L54; Secondary 60E07, 60G70
- DOI: https://doi.org/10.1090/proc/15595
- MathSciNet review: 4310105