Isoperimetric inequalities for Poincaré duality groups
HTML articles powered by AMS MathViewer
- by Dawid Kielak and Peter Kropholler PDF
- Proc. Amer. Math. Soc. 149 (2021), 4685-4698 Request permission
Abstract:
We show that every oriented $n$-dimensional Poincaré duality group over a $*$-ring $R$ is amenable or satisfies a linear homological isoperimetric inequality in dimension $n-1$. As an application, we prove the Tits alternative for such groups when $n=2$. We then deduce a new proof of the fact that when $n=2$ and $R = \mathbb {Z}$ then the group in question is a surface group.References
- Mladen Bestvina, Local homology properties of boundaries of groups, Michigan Math. J. 43 (1996), no. 1, 123–139. MR 1381603, DOI 10.1307/mmj/1029005393
- Martin R. Bridson and André Haefliger, Metric spaces of non-positive curvature, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319, Springer-Verlag, Berlin, 1999. MR 1744486, DOI 10.1007/978-3-662-12494-9
- Robert Bieri, Homological dimension of discrete groups, 2nd ed., Queen Mary College Mathematics Notes, Queen Mary College, Department of Pure Mathematics, London, 1981. MR 715779
- Brian H. Bowditch, Planar groups and the Seifert conjecture, J. Reine Angew. Math. 576 (2004), 11–62. MR 2099199, DOI 10.1515/crll.2004.084
- B. H. Bowditch, Convergence groups and configuration spaces, Geometric group theory down under (Canberra, 1996) de Gruyter, Berlin, 1999, pp. 23–54. MR 1714838
- Kenneth S. Brown, Cohomology of groups, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, New York-Berlin, 1982. MR 672956
- Armand Borel and Jean-Pierre Serre, Adjonction de coins aux espaces symétriques; applications à la cohomologie des groupes arithmétiques, C. R. Acad. Sci. Paris Sér. A-B 271 (1970), A1156–A1158 (French). MR 271114
- R. G. Burns and Donald Solitar, The indices of torsion-free subgroups of Fuchsian groups, Proc. Amer. Math. Soc. 89 (1983), no. 3, 414–418. MR 715855, DOI 10.1090/S0002-9939-1983-0715855-0
- Andrew Casson and Douglas Jungreis, Convergence groups and Seifert fibered $3$-manifolds, Invent. Math. 118 (1994), no. 3, 441–456. MR 1296353, DOI 10.1007/BF01231540
- D. Degrijse, Amenable groups of finite cohomological dimension and the zero divisor conjecture, arXiv e-prints, arXiv:1609.07635, 2016.
- M. J. Dunwoody, Accessibility and groups of cohomological dimension one, Proc. London Math. Soc. (3) 38 (1979), no. 2, 193–215. MR 531159, DOI 10.1112/plms/s3-38.2.193
- Beno Eckmann, Projective and Hilbert modules over group algebras, and finitely dominated spaces, Comment. Math. Helv. 71 (1996), no. 3, 453–462. MR 1418948, DOI 10.1007/BF02566430
- Beno Eckmann and Peter Linnell, Groupes à dualité de Poincaré de dimension $2$, C. R. Acad. Sci. Paris Sér. I Math. 295 (1982), no. 6, 417–418 (French, with English summary). MR 683392
- Beno Eckmann and Peter Linnell, Poincaré duality groups of dimension two. II, Comment. Math. Helv. 58 (1983), no. 1, 111–114. MR 699010, DOI 10.1007/BF02564628
- Beno Eckmann and Heinz Müller, Poincaré duality groups of dimension two, Comment. Math. Helv. 55 (1980), no. 4, 510–520. MR 604709, DOI 10.1007/BF02566702
- David Gabai, Convergence groups are Fuchsian groups, Ann. of Math. (2) 136 (1992), no. 3, 447–510. MR 1189862, DOI 10.2307/2946597
- Étienne Ghys and Pierre de la Harpe, La propriété de Markov pour les groupes hyperboliques, Sur les groupes hyperboliques d’après Mikhael Gromov (Bern, 1988) Progr. Math., vol. 83, Birkhäuser Boston, Boston, MA, 1990, pp. 165–187 (French). MR 1086657, DOI 10.1007/978-1-4684-9167-8_{9}
- S. M. Gersten, Subgroups of word hyperbolic groups in dimension $2$, J. London Math. Soc. (2) 54 (1996), no. 2, 261–283. MR 1405055, DOI 10.1112/jlms/54.2.261
- S. M. Gersten, Cohomological lower bounds for isoperimetric functions on groups, Topology 37 (1998), no. 5, 1031–1072. MR 1650363, DOI 10.1016/S0040-9383(97)00070-0
- Daniel Groves and Jason Fox Manning, Dehn filling in relatively hyperbolic groups, Israel J. Math. 168 (2008), 317–429. MR 2448064, DOI 10.1007/s11856-008-1070-6
- A. Howard M. Hoare, Abraham Karrass, and Donald Solitar, Subgroups of infinite index in Fuchsian groups, Math. Z. 125 (1972), 59–69. MR 292948, DOI 10.1007/BF01111114
- F. E. A. Johnson and C. T. C. Wall, On groups satisfying Poincaré duality, Ann. of Math. (2) 96 (1972), 592–598. MR 311796, DOI 10.2307/1970827
- M. Kapovich and B. Kleiner, Geometry of quasi-planes, Unpublished manuscript available at: http://www.math.ucdavis.edu/~kapovich/EPR/pd3.pdf, 2004.
- Urs Lang, Higher-dimensional linear isoperimetric inequalities in hyperbolic groups, Internat. Math. Res. Notices 13 (2000), 709–717. MR 1772520, DOI 10.1155/S1073792800000398
- Wolfgang Lück, $L^2$-invariants: theory and applications to geometry and $K$-theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 44, Springer-Verlag, Berlin, 2002. MR 1926649, DOI 10.1007/978-3-662-04687-6
- Igor Mineyev, Higher dimensional isoperimetric functions in hyperbolic groups, Math. Z. 233 (2000), no. 2, 327–345. MR 1743440, DOI 10.1007/PL00004801
- Igor Mineyev, Bounded cohomology characterizes hyperbolic groups, Q. J. Math. 53 (2002), no. 1, 59–73. MR 1887670, DOI 10.1093/qjmath/53.1.59
- Dave Witte Morris, Introduction to arithmetic groups, Deductive Press, [place of publication not identified], 2015. MR 3307755
- Heinz Müller, Groupes et paires de groupes à dualité de Poincaré de dimension $2$, C. R. Acad. Sci. Paris Sér. A-B 289 (1979), no. 6, A373–A374 (French, with English summary). MR 554948
- Jean-Pierre Serre, Trees, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003. Translated from the French original by John Stillwell; Corrected 2nd printing of the 1980 English translation. MR 1954121
- John R. Stallings, On torsion-free groups with infinitely many ends, Ann. of Math. (2) 88 (1968), 312–334. MR 228573, DOI 10.2307/1970577
- R. Strebel, A remark on subgroups of infinite index in Poincaré duality groups, Comment. Math. Helv. 52 (1977), no. 3, 317–324. MR 457588, DOI 10.1007/BF02567371
- Pekka Tukia, Homeomorphic conjugates of Fuchsian groups, J. Reine Angew. Math. 391 (1988), 1–54. MR 961162, DOI 10.1515/crll.1988.391.1
Additional Information
- Dawid Kielak
- Affiliation: Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, United Kingdom
- MR Author ID: 1027989
- ORCID: 0000-0002-5536-9070
- Email: kielak@maths.ox.ac.uk
- Peter Kropholler
- Affiliation: Mathematical Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
- MR Author ID: 203863
- ORCID: 0000-0001-5460-1512
- Email: P.H.Kropholler@southampton.ac.uk
- Received by editor(s): August 15, 2020
- Received by editor(s) in revised form: January 19, 2021, March 8, 2021, and March 17, 2021
- Published electronically: August 13, 2021
- Additional Notes: The first author was partly supported by a grant from the German Science Foundation (DFG) within the Priority Programme SPP2026 ‘Geometry at Infinity’. This work had received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme, Grant agreement No. 850930
- Communicated by: David Futer
- © Copyright 2021 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 149 (2021), 4685-4698
- MSC (2020): Primary 20J06, 57P10
- DOI: https://doi.org/10.1090/proc/15596
- MathSciNet review: 4310095