An extension of the Siegel-Walfisz theorem
HTML articles powered by AMS MathViewer
- by Andreas Weingartner
- Proc. Amer. Math. Soc. 149 (2021), 4699-4708
- DOI: https://doi.org/10.1090/proc/15607
- Published electronically: August 4, 2021
- PDF | Request permission
Abstract:
We extend the Siegel-Walfisz theorem to a family of integer sequences that are characterized by constraints on the size of the prime factors. Besides prime powers, this family includes smooth numbers, almost primes and practical numbers.References
- J. B. Friedlander, Selberg’s formula and Siegel’s zero, Recent progress in analytic number theory, Vol. 1 (Durham, 1979) Academic Press, London-New York, 1981, pp. 15–23. MR 637340
- Adam J. Harper, On a paper of K. Soundararajan on smooth numbers in arithmetic progressions, J. Number Theory 132 (2012), no. 1, 182–199. MR 2843307, DOI 10.1016/j.jnt.2011.07.005
- Emmanuel Knafo, On a generalization of the Selberg formula, J. Number Theory 125 (2007), no. 2, 319–343. MR 2332592, DOI 10.1016/j.jnt.2006.10.013
- G. Kolesnik, On the order of Dirichlet $L$-functions, Pacific J. Math. 82 (1979), no. 2, 479–484. MR 551704
- Maurice Margenstern, Les nombres pratiques: théorie, observations et conjectures, J. Number Theory 37 (1991), no. 1, 1–36 (French, with English summary). MR 1089787, DOI 10.1016/S0022-314X(05)80022-8
- Hugh L. Montgomery and Robert C. Vaughan, Multiplicative number theory. I. Classical theory, Cambridge Studies in Advanced Mathematics, vol. 97, Cambridge University Press, Cambridge, 2007. MR 2378655
- C. Pomerance and A. Weingartner, On primes and practical numbers, Ramanujan J. (2021), https://doi.org/10.1007/s11139-020-00354-y.
- Eric Saias, Entiers à diviseurs denses. I, J. Number Theory 62 (1997), no. 1, 163–191 (French, with English summary). MR 1430008, DOI 10.1006/jnth.1997.2057
- A. K. Srinivasan, Practical numbers, Current Sci. 17 (1948), 179–180. MR 27799
- Gérald Tenenbaum, Sur un problème de crible et ses applications, Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 1, 1–30 (French). MR 860809
- Gérald Tenenbaum, Introduction to analytic and probabilistic number theory, Cambridge Studies in Advanced Mathematics, vol. 46, Cambridge University Press, Cambridge, 1995. Translated from the second French edition (1995) by C. B. Thomas. MR 1342300
- Andreas Weingartner, Practical numbers and the distribution of divisors, Q. J. Math. 66 (2015), no. 2, 743–758. MR 3356847, DOI 10.1093/qmath/hav006
- Andreas Weingartner, A sieve problem and its application, Mathematika 63 (2017), no. 1, 213–229. MR 3610011, DOI 10.1112/S002557931600022X
- Andreas Weingartner, On the constant factor in several related asymptotic estimates, Math. Comp. 88 (2019), no. 318, 1883–1902. MR 3925489, DOI 10.1090/mcom/3402
- Andreas Weingartner, The constant factor in the asymptotic for practical numbers, Int. J. Number Theory 16 (2020), no. 3, 629–638. MR 4079398, DOI 10.1142/S1793042120500311
Bibliographic Information
- Andreas Weingartner
- Affiliation: Department of Mathematics, 351 West University Boulevard, Southern Utah University, Cedar City, Utah 84720
- MR Author ID: 678374
- Email: weingartner@suu.edu
- Received by editor(s): November 16, 2020
- Received by editor(s) in revised form: March 24, 2021
- Published electronically: August 4, 2021
- Communicated by: Amanda Folsom
- © Copyright 2021 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 149 (2021), 4699-4708
- MSC (2020): Primary 11N25, 11N69
- DOI: https://doi.org/10.1090/proc/15607
- MathSciNet review: 4310096