A comparison between two de Rham complexes in diffeology
HTML articles powered by AMS MathViewer
- by Katsuhiko Kuribayashi
- Proc. Amer. Math. Soc. 149 (2021), 4963-4972
- DOI: https://doi.org/10.1090/proc/15622
- Published electronically: August 6, 2021
- PDF | Request permission
Abstract:
There are two de Rham complexes in diffeology. The original one is due to Souriau and the other one is the singular de Rham complex defined by a simplicial differential graded algebra. We compare the first de Rham cohomology groups of the two complexes within the Čech–de Rham spectral sequence by making use of the factor map which connects the two de Rham complexes. As a consequence, it follows that the singular de Rham cohomology algebra of the irrational torus $T_\theta$ is isomorphic to the tensor product of the original de Rham cohomology and the exterior algebra generated by a non-trivial flow bundle over $T_\theta$.References
- A. K. Bousfield and V. K. A. M. Gugenheim, On $\textrm {PL}$ de Rham theory and rational homotopy type, Mem. Amer. Math. Soc. 8 (1976), no. 179, ix+94. MR 425956, DOI 10.1090/memo/0179
- Edgar H. Brown Jr. and Robert H. Szczarba, Rational and real homotopy theory with arbitrary fundamental groups, Duke Math. J. 71 (1993), no. 1, 299–316. MR 1230293, DOI 10.1215/S0012-7094-93-07111-6
- Kuo Tsai Chen, Iterated path integrals, Bull. Amer. Math. Soc. 83 (1977), no. 5, 831–879. MR 454968, DOI 10.1090/S0002-9904-1977-14320-6
- J. Daniel Christensen and Enxin Wu, The homotopy theory of diffeological spaces, New York J. Math. 20 (2014), 1269–1303. MR 3312059
- Antonio Gómez-Tato, Stephen Halperin, and Daniel Tanré, Rational homotopy theory for non-simply connected spaces, Trans. Amer. Math. Soc. 352 (2000), no. 4, 1493–1525. MR 1653355, DOI 10.1090/S0002-9947-99-02463-0
- Patrick Iglesias-Zemmour, Diffeology, Mathematical Surveys and Monographs, vol. 185, American Mathematical Society, Providence, RI, 2013. MR 3025051, DOI 10.1090/surv/185
- P. Iglesias-Zemmour, Čech–de Rham bicomplex in diffeology, preprint, 2019, available at http://math.huji.ac.il/\~piz/Site/The Articles/The Articles.html.
- N. Iwase, Whitney approximation for smooth CW complex, preprint, arXiv:2001.02893v2, 2019 [math.AT].
- Norio Iwase and Nobuyuki Izumida, Mayer-Vietoris sequence for differentiable/diffeological spaces, Algebraic topology and related topics, Trends Math., Birkhäuser/Springer, Singapore, 2019, pp. 123–151. MR 3991180, DOI 10.1007/978-981-13-5742-8_{8}
- Matthias Kreck, Differential algebraic topology, Graduate Studies in Mathematics, vol. 110, American Mathematical Society, Providence, RI, 2010. From stratifolds to exotic spheres. MR 2641092, DOI 10.1090/gsm/110
- Katsuhiko Kuribayashi, Simplicial cochain algebras for diffeological spaces, Indag. Math. (N.S.) 31 (2020), no. 6, 934–967. MR 4170260, DOI 10.1016/j.indag.2020.08.002
- Syunji Moriya, The de Rham homotopy theory and differential graded category, Math. Z. 271 (2012), no. 3-4, 961–1010. MR 2945593, DOI 10.1007/s00209-011-0899-2
- J.-M. Souriau, Groupes différentiels, Differential geometrical methods in mathematical physics (Proc. Conf., Aix-en-Provence/Salamanca, 1979) Lecture Notes in Math., vol. 836, Springer, Berlin, 1980, pp. 91–128 (French). MR 607688
- Norman Steenrod, The Topology of Fibre Bundles, Princeton Mathematical Series, vol. 14, Princeton University Press, Princeton, N. J., 1951. MR 0039258
- Dennis Sullivan, Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 269–331 (1978). MR 646078
- Richard G. Swan, Thom’s theory of differential forms on simplicial sets, Topology 14 (1975), no. 3, 271–273. MR 383446, DOI 10.1016/0040-9383(75)90008-7
Bibliographic Information
- Katsuhiko Kuribayashi
- Affiliation: Department of Mathematical Sciences, Faculty of Science, Shinshu University, Matsumoto, Nagano 390-8621, Japan
- MR Author ID: 307388
- Email: kuri@math.shinshu-u.ac.jp
- Received by editor(s): December 23, 2020
- Received by editor(s) in revised form: March 11, 2021
- Published electronically: August 6, 2021
- Communicated by: Julie Bergner
- © Copyright 2021 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 149 (2021), 4963-4972
- MSC (2020): Primary 57P99, 55U10, 58A10
- DOI: https://doi.org/10.1090/proc/15622
- MathSciNet review: 4310119