Exposing maps in strictly pseudoconvex domains with smooth dependence on parameters
HTML articles powered by AMS MathViewer
- by Arkadiusz Lewandowski
- Proc. Amer. Math. Soc. 149 (2021), 4881-4889
- DOI: https://doi.org/10.1090/proc/15669
- Published electronically: August 12, 2021
- PDF | Request permission
Abstract:
We prove that given a family $(G_t)$ of strictly pseudoconvex domains varying in a $\mathcal {C}^k$-continuous way with respect to the topology on domains (with $k\geq 2$), there exists a $\mathcal {C}^{\lfloor {\frac {k-1}{2}}\rfloor }$-continuously varying family of exposing maps $h_{t,\zeta }$ for all $G_t$ at every $\zeta \in \partial G_t.$References
- Steven R. Bell, The Cauchy transform, potential theory and conformal mapping, 2nd ed., Chapman & Hall/CRC, Boca Raton, FL, 2016. MR 3467031
- F. Deng, J. E. Fornæss, and E. F. Wold, Exposing boundary points of strongly pseudoconvex subvarieties in complex spaces, Proc. Amer. Math. Soc. 146 (2018), no. 6, 2473–2487. MR 3778150, DOI 10.1090/proc/13693
- Fusheng Deng, Qi’an Guan, and Liyou Zhang, Properties of squeezing functions and global transformations of bounded domains, Trans. Amer. Math. Soc. 368 (2016), no. 4, 2679–2696. MR 3449253, DOI 10.1090/tran/6403
- K. Diederich, J. E. Fornæss, and E. F. Wold, Exposing points on the boundary of a strictly pseudoconvex or a locally convexifiable domain of finite 1-type, J. Geom. Anal. 24 (2014), no. 4, 2124–2134. MR 3261733, DOI 10.1007/s12220-013-9410-0
- J. E. Fornæss and E. F. Wold, An estimate for the squeezing function and estimates of invariant metrics, Complex analysis and geometry, Springer Proc. Math. Stat., vol. 144, Springer, Tokyo, 2015, pp. 135–147. MR 3446752, DOI 10.1007/978-4-431-55744-9_{9}
- Arkadiusz Lewandowski, Splitting lemma for biholomorphic mappings with smooth dependence on parameters, J. Geom. Anal. 31 (2021), no. 6, 5783–5798. MR 4267626, DOI 10.1007/s12220-020-00504-0
- Arkadiusz Lewandowski, Families of exposing maps in strictly pseudoconvex domains, J. Geom. Anal. 31 (2021), no. 1, 697–714. MR 4203662, DOI 10.1007/s12220-019-00294-0
- Riccardo Ugolini, A parametric jet-interpolation theorem for holomorphic automorphisms of $\Bbb C^n$, J. Geom. Anal. 27 (2017), no. 4, 2684–2699. MR 3707990, DOI 10.1007/s12220-017-9778-3
- Erlend F. Wold, Asymptotics of invariant metrics in the normal direction and a new characterisation of the unit disk, Math. Z. 288 (2018), no. 3-4, 875–887. MR 3778982, DOI 10.1007/s00209-017-1917-9
Bibliographic Information
- Arkadiusz Lewandowski
- Affiliation: Faculty of Mathematics and Computer Science, Institute of Mathematics, Jagiellonian University, Łojasiewicza 6, 30-348 Kraków, Poland
- MR Author ID: 880242
- ORCID: 0000-0002-8541-6552
- Email: Arkadiusz.Lewandowski@im.uj.edu.pl
- Received by editor(s): August 19, 2020
- Received by editor(s) in revised form: April 1, 2021
- Published electronically: August 12, 2021
- Additional Notes: The author was supported by the grant UMO-2017/26/D/ST1/00126 financed by the National Science Centre, Poland
- Communicated by: Filippo Bracci
- © Copyright 2021 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 149 (2021), 4881-4889
- MSC (2020): Primary 32H02; Secondary 32T15
- DOI: https://doi.org/10.1090/proc/15669
- MathSciNet review: 4310112