The finitistic dimension of an Artin algebra with radical square zero
HTML articles powered by AMS MathViewer
- by Vincent Gélinas
- Proc. Amer. Math. Soc. 149 (2021), 5001-5012
- DOI: https://doi.org/10.1090/proc/15441
- Published electronically: September 9, 2021
- PDF | Request permission
Abstract:
We investigate the inequality $\operatorname {Findim} \Lambda ^{op} \leq \operatorname {dell} \Lambda$ between the finitistic dimension and the delooping level of an Artin algebra $\Lambda$, and whether equality holds in general. We prove that equality $\operatorname {Findim} \Lambda ^{op} = \operatorname {dell} \Lambda$ always holds for Artin algebras with radical square zero.References
- Maurice Auslander and Mark Bridger, Stable module theory, Memoirs of the American Mathematical Society, No. 94, American Mathematical Society, Providence, R.I., 1969. MR 0269685
- Lidia Angeleri Hügel, Dolors Herbera, and Jan Trlifaj, Tilting modules and Gorenstein rings, Forum Math. 18 (2006), no. 2, 211–229. MR 2218418, DOI 10.1515/FORUM.2006.013
- Maurice Auslander and Idun Reiten, Homologically finite subcategories, Representations of algebras and related topics (Kyoto, 1990) London Math. Soc. Lecture Note Ser., vol. 168, Cambridge Univ. Press, Cambridge, 1992, pp. 1–42. MR 1211476
- Maurice Auslander and Idun Reiten, Syzygy modules for Noetherian rings, J. Algebra 183 (1996), no. 1, 167–185. MR 1397392, DOI 10.1006/jabr.1996.0212
- Maurice Auslander, Idun Reiten, and Sverre O. Smalø, Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics, vol. 36, Cambridge University Press, Cambridge, 1997. Corrected reprint of the 1995 original. MR 1476671
- Hyman Bass, Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95 (1960), 466–488. MR 157984, DOI 10.1090/S0002-9947-1960-0157984-8
- Hyman Bass, Injective dimension in Noetherian rings, Trans. Amer. Math. Soc. 102 (1962), 18–29. MR 138644, DOI 10.1090/S0002-9947-1962-0138644-8
- Diego Bravo and Charles Paquette, Idempotent reduction for the finitistic dimension conjecture, Proc. Amer. Math. Soc. 148 (2020), no. 5, 1891–1900. MR 4078075, DOI 10.1090/proc/14945
- V. Gélinas, The depth, the delooping level and the finitistic dimension, arXiv:2004.04828, 2020.
- Michel Raynaud and Laurent Gruson, Critères de platitude et de projectivité. Techniques de “platification” d’un module, Invent. Math. 13 (1971), 1–89 (French). MR 308104, DOI 10.1007/BF01390094
- D. Happel, Homological conjectures in representation theory of finite-dimensional algebras, preprint, 1990. Available at: http://www.math.ntnu.no/~oyvinso/Nordfjordeid/Program/references.html.
- Birge Zimmermann-Huisgen, Homological domino effects and the first finitistic dimension conjecture, Invent. Math. 108 (1992), no. 2, 369–383. MR 1161097, DOI 10.1007/BF02100610
- Birge Zimmermann Huisgen, The finitistic dimension conjectures—a tale of $3.5$ decades, Abelian groups and modules (Padova, 1994) Math. Appl., vol. 343, Kluwer Acad. Publ., Dordrecht, 1995, pp. 501–517. MR 1378224
- J. P. Jans, Some generalizations of finite projective dimension, Illinois J. Math. 5 (1961), 334–344. MR 183748
- Uwe Jannsen, Iwasawa modules up to isomorphism, Algebraic number theory, Adv. Stud. Pure Math., vol. 17, Academic Press, Boston, MA, 1989, pp. 171–207. MR 1097615, DOI 10.2969/aspm/01710171
- Henning Krause, Finitistic dimension and Ziegler spectrum, Proc. Amer. Math. Soc. 126 (1998), no. 4, 983–987. MR 1425129, DOI 10.1090/S0002-9939-98-04170-7
- Horace Mochizuki, Finitistic global dimension for rings, Pacific J. Math. 15 (1965), 249–258. MR 178026, DOI 10.2140/pjm.1965.15.249
- C. M. Ringel, The finitistic dimension of a Nakayama algebra, arXiv:2008.10044, 2020.
- Claus Michael Ringel and Pu Zhang, Gorenstein-projective and semi-Gorenstein-projective modules, Algebra Number Theory 14 (2020), no. 1, 1–36. MR 4076806, DOI 10.2140/ant.2020.14.1
- Sibylle Schroll, On the representation dimension and finitistic dimension of special multiserial algebras, Proc. Amer. Math. Soc. 147 (2019), no. 6, 2275–2280. MR 3951410, DOI 10.1090/proc/14230
- Sverre O. Smalø, The supremum of the difference between the big and little finitistic dimensions is infinite, Proc. Amer. Math. Soc. 126 (1998), no. 9, 2619–2622. MR 1452828, DOI 10.1090/S0002-9939-98-04409-8
- Y. Yoshino, Homotopy category of unbounded complexes of projective modules, arXiv:1805.05705, 2018.
Bibliographic Information
- Vincent Gélinas
- ORCID: 0000-0002-1743-8100
- Email: vincent.gelinas@mail.utoronto.ca
- Received by editor(s): May 26, 2020
- Published electronically: September 9, 2021
- Communicated by: Jerzy Weyman
- © Copyright 2021 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 149 (2021), 5001-5012
- MSC (2020): Primary 16E10
- DOI: https://doi.org/10.1090/proc/15441
- MathSciNet review: 4327410