Grothendieck-Lefschetz and Noether-Lefschetz for bundles
HTML articles powered by AMS MathViewer
- by G. V. Ravindra and Amit Tripathi
- Proc. Amer. Math. Soc. 149 (2021), 5025-5034
- DOI: https://doi.org/10.1090/proc/15519
- Published electronically: September 27, 2021
- PDF | Request permission
Abstract:
We prove a mild strengthening of a theorem of C̆esnavic̆ius which gives a criterion for a vector bundle on a smooth complete intersection of dimension at least $3$ to split into a sum of line bundles. We also prove an analogous statement for bundles on a general complete intersection surface.References
- Indranil Biswas, A criterion for the splitting of a principal bundle over a projective space, Arch. Math. (Basel) 84 (2005), no. 1, 38–45. MR 2106403, DOI 10.1007/s00013-004-1192-y
- Kęstutis Česnavičius, Grothendieck-Lefschetz for vector bundles, Algebr. Geom. 7 (2020), no. 4, 503–511. MR 4156414, DOI 10.14231/ag-2020-016
- Alexander Grothendieck, Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux $(SGA$ $2)$, Advanced Studies in Pure Mathematics, Vol. 2, North-Holland Publishing Co., Amsterdam; Masson & Cie, Editeur, Paris, 1968 (French). Augmenté d’un exposé par Michèle Raynaud; Séminaire de Géométrie Algébrique du Bois-Marie, 1962. MR 0476737
- Hailong Dao, Some homological properties of modules over a complete intersection, with applications, Commutative algebra, Springer, New York, 2013, pp. 335–371. MR 3051378, DOI 10.1007/978-1-4614-5292-8_{1}0
- Robin Hartshorne, Stable reflexive sheaves, Math. Ann. 254 (1980), no. 2, 121–176. MR 597077, DOI 10.1007/BF01467074
- G. Horrocks, Vector bundles on the punctured spectrum of a local ring, Proc. London Math. Soc. (3) 14 (1964), 689–713. MR 169877, DOI 10.1112/plms/s3-14.4.689
- Craig Huneke and Roger Wiegand, Tensor products of modules and the rigidity of $\textrm {Tor}$, Math. Ann. 299 (1994), no. 3, 449–476. MR 1282227, DOI 10.1007/BF01459794
- George R. Kempf, A criterion for the splitting of a vector bundle, Forum Math. 2 (1990), no. 5, 477–480. MR 1067213, DOI 10.1515/form.1990.2.477
- N. Mohan Kumar, Vector bundles on projective spaces, Advances in algebra and geometry (Hyderabad, 2001) Hindustan Book Agency, New Delhi, 2003, pp. 185–188. MR 1986152
- G. V. Ravindra and Amit Tripathi, Extensions of vector bundles with application to Noether-Lefschetz theorems, Commun. Contemp. Math. 15 (2013), no. 5, 1350003, 20. MR 3117352, DOI 10.1142/S021919971350003X
Bibliographic Information
- G. V. Ravindra
- Affiliation: Department of Mathematics and Statistics, University of Missouri – St. Louis, St. Louis, Missouri 63121
- MR Author ID: 705313
- Email: girivarur@umsl.edu
- Amit Tripathi
- Affiliation: Department of Mathematics, Indian Institute of Technology – Hyderabad, Kandi, Sangareddy 502285, Telangana, India
- MR Author ID: 1040092
- Email: amittr@gmail.com
- Received by editor(s): October 3, 2019
- Received by editor(s) in revised form: October 12, 2019, and January 31, 2021
- Published electronically: September 27, 2021
- Communicated by: Matthew A. Papanikolas
- © Copyright 2021 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 149 (2021), 5025-5034
- MSC (2020): Primary 14J70; Secondary 13D02
- DOI: https://doi.org/10.1090/proc/15519
- MathSciNet review: 4327412