Refinements of the Gauss-Lucas theorem using rational lemniscates and polar convexity
HTML articles powered by AMS MathViewer
- by Hristo Sendov
- Proc. Amer. Math. Soc. 149 (2021), 5179-5193
- DOI: https://doi.org/10.1090/proc/15543
- Published electronically: September 24, 2021
- PDF | Request permission
Abstract:
The classical Gauss-Lucas theorem for complex polynomials $p(z) ≔(z-z_1) \cdots (z-z_n)$ states that the critical points of $p(z)$ are in the convex hull of its zeros. We give two refinements of the Gauss-Lucas theorem, both connected by the notion of polar convexity.
In the first, we describe lemniscatic regions that do not contain non-trivial critical points of any polynomial of the form $(z-z_1) \cdots (z-z_m)(z-z^*_{m+1})\cdots (z-z^*_{n})$, when the parameters $z^*_{m+1},\ldots ,z^*_{n}$ vary freely in a specified set, containing the zeros $z_{m+1},\ldots ,z_{n}$.
In the second, we locate the non-trivial critical points of $p(z)$ in the intersection of $m+1$ polar-convex sets, where $m$ is the number of distinct zeros of $p(z)$. This refinement complements recent ones in Dimitrov [Proc. Amer. Math. Soc. 126 (1998), pp. 2065–2070] and in Curgus and Mascioni [Proc. Amer. Math. Soc. 132 (2004), pp. 2973–2981].
References
- Donald I. Cartwright and Tim Steger, Elementary symmetric polynomials in numbers of modulus 1, Canad. J. Math. 54 (2002), no. 2, 239–262. MR 1892996, DOI 10.4153/CJM-2002-008-x
- Branko Ćurgus and Vania Mascioni, A contraction of the Lucas polygon, Proc. Amer. Math. Soc. 132 (2004), no. 10, 2973–2981. MR 2063118, DOI 10.1090/S0002-9939-04-07231-4
- Dimitar K. Dimitrov, A refinement of the Gauss-Lucas theorem, Proc. Amer. Math. Soc. 126 (1998), no. 7, 2065–2070. MR 1452801, DOI 10.1090/S0002-9939-98-04381-0
- E. Hille, Analytic Function Theory, volume II, AMS Chelsea Publishing, 2002.
- S. M. Malamud, Inverse spectral problem for normal matrices and the Gauss-Lucas theorem, Trans. Amer. Math. Soc. 357 (2005), no. 10, 4043–4064. MR 2159699, DOI 10.1090/S0002-9947-04-03649-9
- Rajesh Pereira, Differentiators and the geometry of polynomials, J. Math. Anal. Appl. 285 (2003), no. 1, 336–348. MR 2000158, DOI 10.1016/S0022-247X(03)00465-7
- Q. I. Rahman and G. Schmeisser, Analytic theory of polynomials, London Mathematical Society Monographs. New Series, vol. 26, The Clarendon Press, Oxford University Press, Oxford, 2002. MR 1954841
- R. Tyrrell Rockafellar, Convex analysis, Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, N.J., 1970. MR 0274683, DOI 10.1515/9781400873173
- Blagovest Sendov and Hristo Sendov, Loci of complex polynomials, part I, Trans. Amer. Math. Soc. 366 (2014), no. 10, 5155–5184. MR 3240921, DOI 10.1090/S0002-9947-2014-06178-3
- Blagovest Sendov, Hristo Sendov, and Chun Wang, Polar convexity and critical points of polynomials, J. Convex Anal. 26 (2019), no. 2, 635–660. MR 3950964
- Blagovest Sendov and Hristo Sendov, Sets in the complex plane mapped into convex ones by Möbius transformations, J. Convex Anal. 27 (2020), no. 3, 791–810. MR 4158521
- Wilhelm Specht, Eine Bemerkung zum Satze von Gauss-Lucas, Jber. Deutsch. Math.-Verein. 62 (1959), no. Abt. 1, 85–92 (1959) (German). MR 113990
- M. Krawtchouk, Note sur la distribution des racines des polynomes dérivés, L’Enseignement Mathématique 25 (1925), 74–76.
- A. C. Thompson, Minkowski geometry, Encyclopedia of Mathematics and its Applications, vol. 63, Cambridge University Press, Cambridge, 1996. MR 1406315, DOI 10.1017/CBO9781107325845
Bibliographic Information
- Hristo Sendov
- Affiliation: Department of Statistical and Actuarial Sciences, Western University, 1151 Richmond Str, London, Ontario, N6A 5B7, Canada
- MR Author ID: 677602
- Email: hssendov@stats.uwo.ca
- Received by editor(s): March 4, 2020
- Received by editor(s) in revised form: December 16, 2020, and February 2, 2021
- Published electronically: September 24, 2021
- Additional Notes: The author was partially supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada.
- Communicated by: Harold P. Boas
- © Copyright 2021 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 149 (2021), 5179-5193
- MSC (2020): Primary 30C10
- DOI: https://doi.org/10.1090/proc/15543
- MathSciNet review: 4327424
Dedicated: Dedicated to the loving memory of Blagovest Sendov