The nilpotent cone for classical Lie superalgebras
HTML articles powered by AMS MathViewer
- by L. Andrew Jenkins and Daniel K. Nakano
- Proc. Amer. Math. Soc. 149 (2021), 5065-5080
- DOI: https://doi.org/10.1090/proc/15599
- Published electronically: September 9, 2021
- PDF | Request permission
Abstract:
In this paper the authors introduce an analogue of the nilpotent cone, ${\mathcal N}$, for a classical Lie superalgebra, ${\mathfrak g}$, that generalizes the definition for the nilpotent cone for semisimple Lie algebras. For a classical simple Lie superalgebra, ${\mathfrak g}={\mathfrak g}_{\bar 0}\oplus {\mathfrak g}_{\bar 1}$ with $\text {Lie }G_{\bar 0}={\mathfrak g}_{\bar 0}$, it is shown that there are finitely many $G_{\bar 0}$-orbits on ${\mathcal N}$. Later the authors prove that the Duflo-Serganova commuting variety, ${\mathcal X}$, is contained in ${\mathcal N}$ for any classical simple Lie superalgebra. Consequently, our finiteness result generalizes and extends the work of Duflo-Serganova on the commuting variety. Further applications are given at the end of the paper.References
- Brian D. Boe, Jonathan R. Kujawa, and Daniel K. Nakano, Cohomology and support varieties for Lie superalgebras, Trans. Amer. Math. Soc. 362 (2010), no. 12, 6551–6590. MR 2678986, DOI 10.1090/S0002-9947-2010-05096-2
- Brian D. Boe, Jonathan R. Kujawa, and Daniel K. Nakano, Cohomology and support varieties for Lie superalgebras. II, Proc. Lond. Math. Soc. (3) 98 (2009), no. 1, 19–44. MR 2472160, DOI 10.1112/plms/pdn019
- Brian D. Boe, Jonathan R. Kujawa, and Daniel K. Nakano, Complexity and module varieties for classical Lie superalgebras, Int. Math. Res. Not. IMRN 3 (2011), 696–724. MR 2764876, DOI 10.1093/imrn/rnq090
- Brian D. Boe, Jonathan R. Kujawa, and Daniel K. Nakano, Tensor triangular geometry for classical Lie superalgebras, Adv. Math. 314 (2017), 228–277. MR 3658717, DOI 10.1016/j.aim.2017.04.022
- Armand Borel, Linear algebraic groups, 2nd ed., Graduate Texts in Mathematics, vol. 126, Springer-Verlag, New York, 1991. MR 1102012, DOI 10.1007/978-1-4612-0941-6
- Shun-Jen Cheng and Weiqiang Wang, Dualities and representations of Lie superalgebras, Graduate Studies in Mathematics, vol. 144, American Mathematical Society, Providence, RI, 2012. MR 3012224, DOI 10.1090/gsm/144
- Jiri Dadok and Victor Kac, Polar representations, J. Algebra 92 (1985), no. 2, 504–524. MR 778464, DOI 10.1016/0021-8693(85)90136-X
- M. Duflo and V. Serganova, On associated variety for Lie superalgebras, arXiv:0507198, 2005.
- D. B. Fuks, Cohomology of Infinite Dimensional Lie Algebras, Springer, 1986.
- Dimitar Grantcharov, Nikolay Grantcharov, Daniel K. Nakano, and Jerry Wu, On BBW parabolics for simple classical Lie superalgebras, Adv. Math. 381 (2021), Paper No. 107647, 44. MR 4219889, DOI 10.1016/j.aim.2021.107647
- Caroline Gruson and Séverine Leidwanger, Cônes nilpotents des super algèbres de Lie orthosymplectiques, Ann. Math. Blaise Pascal 17 (2010), no. 2, 303–326 (French, with English and French summaries). MR 2778918, DOI 10.5802/ambp.285
- Ryoshi Hotta, Kiyoshi Takeuchi, and Toshiyuki Tanisaki, $D$-modules, perverse sheaves, and representation theory, Progress in Mathematics, vol. 236, Birkhäuser Boston, Inc., Boston, MA, 2008. Translated from the 1995 Japanese edition by Takeuchi. MR 2357361, DOI 10.1007/978-0-8176-4523-6
- James E. Humphreys, Conjugacy classes in semisimple algebraic groups, Mathematical Surveys and Monographs, vol. 43, American Mathematical Society, Providence, RI, 1995. MR 1343976, DOI 10.1090/surv/043
- Jens Carsten Jantzen, Representations of algebraic groups, 2nd ed., Mathematical Surveys and Monographs, vol. 107, American Mathematical Society, Providence, RI, 2003. MR 2015057
- Jens Carsten Jantzen, Nilpotent orbits in representation theory, Lie theory, Progr. Math., vol. 228, Birkhäuser Boston, Boston, MA, 2004, pp. 1–211. MR 2042689
- V. G. Kac, Some remarks on nilpotent orbits, J. Algebra 64 (1980), no. 1, 190–213. MR 575790, DOI 10.1016/0021-8693(80)90141-6
- Gustav I. Lehrer, Daniel K. Nakano, and Ruibin Zhang, Detecting cohomology for Lie superalgebras, Adv. Math. 228 (2011), no. 4, 2098–2115. MR 2836115, DOI 10.1016/j.aim.2011.06.033
- D. Luna and R. W. Richardson, A generalization of the Chevalley restriction theorem, Duke Math. J. 46 (1979), no. 3, 487–496. MR 544240, DOI 10.1215/S0012-7094-79-04623-4
- I. Penkov and V. Serganova, Characters of irreducible $G$-modules and cohomology of $G/P$ for the Lie supergroup $G=Q(N)$, J. Math. Sci. (New York) 84 (1997), no. 5, 1382–1412. Algebraic geometry, 7. MR 1465520, DOI 10.1007/BF02399196
Bibliographic Information
- L. Andrew Jenkins
- Affiliation: Department of Mathematics, University of Georgia, Athens, Georgia 30602
- ORCID: 0000-0001-8426-2494
- Email: lee.jenkins25@uga.edu
- Daniel K. Nakano
- Affiliation: Department of Mathematics, University of Georgia, Athens, Georgia 30602
- MR Author ID: 310155
- ORCID: 0000-0001-7984-0341
- Email: nakano@uga.edu
- Received by editor(s): November 17, 2020
- Received by editor(s) in revised form: March 12, 2021
- Published electronically: September 9, 2021
- Additional Notes: Research of the first author was supported in part by NSF (RTG) grant DMS-1344994
Research of the second author was supported in part by NSF grants DMS-1701768 and DMS-2101941 - Communicated by: Sarah Witherspooon
- © Copyright 2021 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 149 (2021), 5065-5080
- MSC (2020): Primary 17B05, 17B10
- DOI: https://doi.org/10.1090/proc/15599
- MathSciNet review: 4327415