Inertial manifolds for a singularly non-autonomous semi-linear parabolic equations
HTML articles powered by AMS MathViewer
- by Xinhua Li and Chunyou Sun
- Proc. Amer. Math. Soc. 149 (2021), 5275-5289
- DOI: https://doi.org/10.1090/proc/15606
- Published electronically: September 21, 2021
- PDF | Request permission
Abstract:
This paper devotes to the existence of an $N$-dimensional inertial manifold for a class of singularly, i.e. $A(t)$ may degenerate to $0$ at some time $t$, non-autonomous parabolic equations \begin{equation*} \partial _{t}u+A(t)u=F(t,u)+g(x,t),\;t>\tau ;\; \; u|_{t=\tau }=u_{\tau }(x),\;x\in \Omega , \end{equation*} where $A(t)\geq 0$ for any $t\geq \tau$, and $\Omega \subset \mathbb {R}^{d}$ is a bounded domain with smooth boundary. Since the operator $A(t)$ may degenerate, a compatibility condition for the operator $A(t)$ and the nonlinear term $F(t,u)$ was proposed to construct the inertial manifolds.References
- Flank D. M. Bezerra, Vera L. Carbone, Marcelo J. D. Nascimento, and Karina Schiabel, Pullback attractors for a class of non-autonomous thermoelastic plate systems, Discrete Contin. Dyn. Syst. Ser. B 23 (2018), no. 9, 3553–3571. MR 3927565, DOI 10.3934/dcdsb.2017214
- Alexandre N. Carvalho, José A. Langa, and James C. Robinson, Attractors for infinite-dimensional non-autonomous dynamical systems, Applied Mathematical Sciences, vol. 182, Springer, New York, 2013. MR 2976449, DOI 10.1007/978-1-4614-4581-4
- Alexandre N. Carvalho and Marcelo J. D. Nascimento, Singularly non-autonomous semilinear parabolic problems with critical exponents, Discrete Contin. Dyn. Syst. Ser. S 2 (2009), no. 3, 449–471. MR 2525762, DOI 10.3934/dcdss.2009.2.449
- P. Constantin, C. Foias, B. Nicolaenko, and R. Temam, Integral manifolds and inertial manifolds for dissipative partial differential equations, Applied Mathematical Sciences, vol. 70, Springer-Verlag, New York, 1989. MR 966192, DOI 10.1007/978-1-4612-3506-4
- C. Foias, O. P. Manley, R. Temam, and Y. M. Trève, Asymptotic analysis of the Navier-Stokes equations, Phys. D 9 (1983), no. 1-2, 157–188. MR 732571, DOI 10.1016/0167-2789(83)90297-X
- C. Foias, B. Nicolaenko, G. R. Sell, and R. Temam, Inertial manifolds for the Kuramoto-Sivashinsky equation and an estimate of their lowest dimension, J. Math. Pures Appl. (9) 67 (1988), no. 3, 197–226. MR 964170
- Ciprian Foias, George R. Sell, and Roger Temam, Inertial manifolds for nonlinear evolutionary equations, J. Differential Equations 73 (1988), no. 2, 309–353. MR 943945, DOI 10.1016/0022-0396(88)90110-6
- Ciprian G. Gal and Yanqiu Guo, Inertial manifolds for the hyperviscous Navier-Stokes equations, J. Differential Equations 265 (2018), no. 9, 4335–4374. MR 3843303, DOI 10.1016/j.jde.2018.06.011
- Norbert Koksch and Stefan Siegmund, Cone invariance and squeezing properties for inertial manifolds for nonautonomous evolution equations, Evolution equations (Warsaw, 2001) Banach Center Publ., vol. 60, Polish Acad. Sci. Inst. Math., Warsaw, 2003, pp. 27–48. MR 1993056
- Norbert Koksch and Stefan Siegmund, Pullback attracting inertial manifolds for nonautonomous dynamical systems, J. Dynam. Differential Equations 14 (2002), no. 4, 889–941. MR 1940107, DOI 10.1023/A:1020768711975
- Anna Kostianko, Inertial manifolds for the 3D modified-Leray-$\alpha$ model with periodic boundary conditions, J. Dynam. Differential Equations 30 (2018), no. 1, 1–24. MR 3770290, DOI 10.1007/s10884-017-9635-x
- Anna Kostianko and Sergey Zelik, Inertial manifolds for the 3D Cahn-Hilliard equations with periodic boundary conditions, Commun. Pure Appl. Anal. 14 (2015), no. 5, 2069–2094. MR 3359559, DOI 10.3934/cpaa.2015.14.2069
- Xinhua Li and Chunyou Sun, Inertial manifolds for the 3D modified-Leray-$\alpha$ model, J. Differential Equations 268 (2020), no. 4, 1532–1569. MR 4042351, DOI 10.1016/j.jde.2019.09.001
- John Mallet-Paret and George R. Sell, Inertial manifolds for reaction diffusion equations in higher space dimensions, J. Amer. Math. Soc. 1 (1988), no. 4, 805–866. MR 943276, DOI 10.1090/S0894-0347-1988-0943276-7
- Thieu Huy Nguyen and Xuan-Quang Bui, Competition models with diffusion, analytic semigroups, and inertial manifolds, Math. Methods Appl. Sci. 41 (2018), no. 17, 8182–8200. MR 3891283, DOI 10.1002/mma.5281
- Ian Richards, On the gaps between numbers which are sums of two squares, Adv. in Math. 46 (1982), no. 1, 1–2. MR 676985, DOI 10.1016/0001-8708(82)90051-2
- A. V. Romanov, Sharp estimates for the dimension of inertial manifolds for nonlinear parabolic equations, Izv. Ross. Akad. Nauk Ser. Mat. 57 (1993), no. 4, 36–54 (Russian, with Russian summary); English transl., Russian Acad. Sci. Izv. Math. 43 (1994), no. 1, 31–47. MR 1243350, DOI 10.1070/IM1994v043n01ABEH001557
- A. V. Romanov, On the limit dynamics of evolution equations, Uspekhi Mat. Nauk 51 (1996), no. 2(308), 173–174 (Russian); English transl., Russian Math. Surveys 51 (1996), no. 2, 345–346. MR 1401554, DOI 10.1070/RM1996v051n02ABEH002888
- A. V. Romanov, Finite-dimensional limit dynamics of dissipative parabolic equations, Mat. Sb. 191 (2000), no. 3, 99–112 (Russian, with Russian summary); English transl., Sb. Math. 191 (2000), no. 3-4, 415–429. MR 1773256, DOI 10.1070/SM2000v191n03ABEH000466
- Chunyou Sun, Daomin Cao, and Jinqiao Duan, Non-autonomous dynamics of wave equations with nonlinear damping and critical nonlinearity, Nonlinearity 19 (2006), no. 11, 2645–2665. MR 2267722, DOI 10.1088/0951-7715/19/11/008
- Sergey Zelik, Inertial manifolds and finite-dimensional reduction for dissipative PDEs, Proc. Roy. Soc. Edinburgh Sect. A 144 (2014), no. 6, 1245–1327. MR 3283067, DOI 10.1017/S0308210513000073
Bibliographic Information
- Xinhua Li
- Affiliation: School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, People’s Republic of China
- Email: lxh@lzu.edu.cn
- Chunyou Sun
- Affiliation: School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, People’s Republic of China
- ORCID: 0000-0003-3770-7651
- Email: sunchy@lzu.edu.cn
- Received by editor(s): October 17, 2020
- Received by editor(s) in revised form: March 28, 2021
- Published electronically: September 21, 2021
- Additional Notes: This work was partially supported by the grant No. 11522109 and 11871169
The second author is the corresponding author - Communicated by: Wenxian Shen
- © Copyright 2021 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 149 (2021), 5275-5289
- MSC (2020): Primary 35B40, 35B42, 35K90, 37B55
- DOI: https://doi.org/10.1090/proc/15606
- MathSciNet review: 4327431